组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 16 道试题
1 . 已知定义在上的函数的表达式为,其所有的零点按从小到大的顺序组成数列).
(1)求函数在区间上的值域;
(2)求证:函数在区间)上有且仅有一个零点;
(3)求证:.
2024-04-19更新 | 1195次组卷 | 4卷引用:广东省肇庆市德庆县香山中学2024-2025学年高三上学期8月月考数学试题
2 . 设函数,满足:①;②对任意恒成立.

   

(1)求函数的解析式.
(2)设矩形的一边轴上,顶点在函数的图象上.设矩形的面积为,求证:
3 . 如果定义域为的函数同时满足以下三个条件:(1)对任意的,总有;(2);(3)当,且时,恒成立.则称为“友谊函数”.请解答下列问题:
(1)已知为“友谊函数”,求的值;
(2)判断函数是否为“友谊函数”?并说明理由;
(3)已知为“友谊函数”,存在,使得,且,证明:.
2024-10-25更新 | 133次组卷 | 1卷引用:广东省江门市2025届高三上学期10月调研测试数学试题
4 . 设函数
(1)当时,比较的大小关系;
(2)证明:的图象与的图象关于直线对称;
(3)在平面直角坐标系中,若以为圆心的圆交的图象于AB两点,证明:
2024-08-05更新 | 245次组卷 | 1卷引用:广东省新南方联盟2024届高三下学期4月联考数学试题
智能选题,一键自动生成优质试卷~
5 . 若对任意的实数kb,函数与直线总相切,则称函数为“恒切函数”.
(1)判断函数是否为“恒切函数”;
(2)若函数是“恒切函数”,求证:
6 . 对于函数,把称为函数的一阶导,令,则将称为函数的二阶导,以此类推得到n阶导.为了方便书写,我们将n阶导用表示.
(1)已知函数,写出其二阶导函数并讨论其二阶导函数单调性.
(2)现定义一个新的数列:在作为数列的首项,并将作为数列的第项.我们称该数列为的“n阶导数列”
①若函数),数列的“n阶导数列”,取Tn的前n项积,求数列的通项公式.
②在我们高中阶段学过的初等函数中,是否有函数使得该函数的“n阶导数列”为严格减数列且为无穷数列,请写出它并证明此结论.(写出一个即可)
2023-12-16更新 | 975次组卷 | 7卷引用:广东番禺中学2023-2024学年高三第六次段考数学试题
7 . 拟合(Fittiong)和插值(Imorterpolation)都是利用已知的离散数据点来构造一个能够反映数据变化规律的近似函数,并以此预测或估计未知数据的方法.拟合方法在整体上寻求最好地逼近数据,适用于给定数据可能包含误差的情况,比如线性回归就是一种拟合方法;而插值方法要求近似函数经过所有的已知数据点.适用于需要高精度模型的场景,实际应用中常用多项式函数来逼近原函数,我们称之为移项式插值.例如,为了得到的近似值,我们对函数进行多项式插值.设一次函数满足,可得上的一次插值多项式,由此可计算出的“近似值”,显然这个“近似值”与真实值的误差较大.为了减小插值估计的误差,除了要求插值函数与原函数在给定节点处的函数值相等,还可要求在部分节点处的导数值也相等,甚至要求高阶导数也相等.满足这种要求的插值多项式称为埃尔米特(Hermite)插值多项式.已知函数上的二次埃尔米特插值多项式满足
(1)求,并证明当时,
(2)若当时,,求实数的取值范围;
(3)利用计算的近似值,并证明其误差不超过.
(参考数据:;结果精确到0.001)
8 . 一类项目若投资1元,投资成功的概率为.如果投资成功,会获得元的回报;如果投资失败,则会亏掉1元本金.为了规避风险,分多次投资该类项目,设每次投资金额为剩余本金的,1956年约翰·拉里·凯利计算得出,多次投资的平均回报率函数为,并提出了凯利公式.
(1)证明:当时,使得平均回报率最高的投资比例满足凯利公式
(2)若,求函数上的零点个数.
9 . 设函数.
(1)①当时,证明:
②当时,求的值域;
(2)若数列满足,证明:).
2023-12-30更新 | 1304次组卷 | 5卷引用:广东省广州市华南师大附中2024届高三上学期大湾区数学预测卷(一)
10 . 已知函数,函数是定义在的可导函数,其导数为,满足.
(1)令函数,求证:上是减函数;
(2)若上单调递减,求实数取值范围;
(3)对任意正数,试比较的大小.
2022-11-05更新 | 489次组卷 | 1卷引用:广东省江门市普通高中2023届高三上学期调研数学试题
共计 平均难度:一般