组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 53 道试题
1 . 已知P(1,2)在抛物线Cy2=2px上.
(1)求抛物线C的方程;
(2)AB是抛物线C上的两个动点,如果直线PA的斜率与直线PB的斜率之和为2,证明:直线AB过定点.
2022-04-07更新 | 5842次组卷 | 25卷引用:四川省南充市阆中市阆中中学校2021-2022学年高二下学期期中数学(文)试题
2 . 已知抛物线C=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB且直线PAy轴于M直线PBy轴于N
求直线l的斜率的取值范围
O为原点求证为定值
2018-06-09更新 | 18180次组卷 | 57卷引用:四川省资阳市2022届高三二诊数学理科试题
3 . 已知抛物线的方程为,直线为抛物线的准线,点,且为抛物线上的不同两点,若有垂直.
(1)求抛物线的方程.
(2)证明:直线过定点.
11-12高二上·山东临沂·期末
名校
解题方法
4 . 已知抛物线与直线相交于AB两点.
(1)求证:
(2)当的面积等于时,求k的值.
2023-09-18更新 | 777次组卷 | 43卷引用:四川省广安市第二中学校2022-2023学年高二上学期11月期中考试数学(理)试题
智能选题,一键自动生成优质试卷~
5 . 设抛物线的准线为lAB为抛物线上两动点,,定点使有最小值

(1)求抛物线的方程;
(2)当)时,是否存在一定点T满足为定值?若存在,求出T的坐标和该定值;若不存在,请说明理由.
6 . 如图,已知点是焦点为F的抛物线上一点,AB是抛物线C上异于P的两点,且直线PAPB的倾斜角互补,若直线PA的斜率为.

(1)求抛物线方程;
(2)证明:直线AB的斜率为定值并求出此定值;
(3)令焦点F到直线AB的距离d,求的最大值.
2022-03-05更新 | 1452次组卷 | 4卷引用:四川省树德中学2021-2022学年高三下学期开学考试数学(文)试题
7 . 已知直线lM为平面内一动点,过点M作直线l的垂线,垂足为N,且O为坐标原点).
(1)求动点M的轨迹E的方程;
(2)已知点P(0,2),直线与曲线E交于AB两点,直线PAPB与曲线E的另一交点分别是点CD,证明:直线CD的斜率为定值.
2022-04-19更新 | 1251次组卷 | 6卷引用:四川省宜宾市叙州区第一中学校2022届高三下学期高考适应性考试数学(文)试题
8 . 在平面直角坐标系xOy中,已知点,点P到点F的距离比点Px轴的距离大2,记P的轨迹为C
(1)求C的方程;
(2)ABC上的两点,直线OAOB的斜率分别为,求证直线过定点.
2022-07-15更新 | 1233次组卷 | 4卷引用:四川省遂宁市2021-2022学年高二下学期期末数学文科试题
9 . 已知点,直线轴右侧或轴上动点,且点的距离比线段的长度大1,记点的轨迹为.
(1)求曲线的方程;
(2)已知直线交曲线两点(点在点的上方),为曲线上两个动点,且,求证:直线的斜率为定值.
2021-05-28更新 | 1926次组卷 | 9卷引用:四川省泸县第一中学2022-2023学年高三上学期期末考试数学(文)试题
10 . 已知拋物线的顶点在原点,对称轴为 ​轴,且经过点​.
(1)求抛物线方程;
(2)若直线 ​与抛物线交于​两点,且满足​,求证: 直线​恒过定点,并求出定点坐标.
共计 平均难度:一般