组卷网 > 知识点选题 > 根据直线与椭圆的位置关系求参数或范围
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 125 道试题
1 . 已知椭圆的右焦点与抛物线的焦点重合,且其离心率为.
(1)求椭圆的方程;
(2)已知与坐标轴不垂直的直线与椭圆交于两点,线段的中点为,求证:为坐标原点)为定值.
2023-08-07更新 | 1463次组卷 | 7卷引用:第3章 圆锥曲线与方程章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第一册)
2 . 已知椭圆的短轴长为,离心率为
(1)求椭圆的方程;
(2)过点的动直线与椭圆相交于不同的两点,在线段上取点,满足,证明:点总在某定直线上.
2023-08-04更新 | 1199次组卷 | 5卷引用:江苏省常州市田家炳高级中学2023届高三一模热身练习数学试题
3 . 已知椭圆的右焦点为为坐标原点,点为椭圆上的两点,且中点,则的最小值为(       
A.B.1C.D.
2023-08-03更新 | 322次组卷 | 3卷引用:江苏省徐州市睢宁县第一中学2023届高三下学期5月模拟数学试题
22-23高二上·广东珠海·期末
4 . 已知为坐标原点,,动点满足,记的轨迹为曲线,直线的方程为于两点,则下列结论正确的是(       
A.的方程为
B.的取值范围是
C.的最小值为8
D.可能是直角三角形
2023-08-01更新 | 608次组卷 | 4卷引用:3.1.1 椭圆的标准方程(3)
5 . 已知椭圆的右焦点为,上顶点为,离心率为
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点,且点,当的面积最大时,求直线的方程.
2023-07-26更新 | 1296次组卷 | 13卷引用:江苏省扬州市宝应县2023-2024学年高二上学期期中数学试题
6 . 已知分别为椭圆的左,右顶点,椭圆过点,且离心率为
(1)求椭圆的标准方程;
(2)若为椭圆上异于的一点,且直线分别与直线相交于两点,且直线与椭圆交于另一点,证明:三点共线.
2023-07-16更新 | 254次组卷 | 2卷引用:第3课时 课中 直线与椭圆的位置关系
7 . 已知椭圆,圆x轴的交点恰为的焦点,且上的点到焦点距离的最大值为.
(1)求的标准方程;
(2)不过原点的动直线l交于两点,平面上一点满足,连接BD于点E(点E在线段BD上且不与端点重合),若,试判断直线l与圆M的位置关系,并说明理由.
8 . 已知为椭圆上一点,且点在第一象限,过点且与椭圆相切的直线为.
   
(1)若的斜率为,直线的斜率为,证明:为定值,并求出该定值;
(2)如图,分别是椭圆的过原点的弦,过四点分别作椭圆的切线,四条切线围成四边形,若,求四边形周长的最大值.
9 . 已知椭圆经过点,且离心率为.
(1)求椭圆E的方程;
(2)若经过点,且斜率为k的直线与椭圆E交于不同的两点PQ(均异于点A),证明:直线APAQ的斜率之和为定值.
2023-07-06更新 | 2006次组卷 | 8卷引用:3.1.2 椭圆的几何性质(2)
2023·吉林白山·模拟预测
10 . xOy平面上,设椭圆,梯形ABCD的四个顶点均在上,且.设直线AB的方程为
   
(1)AB的长轴,梯形ABCD的高为,且CAB上的射影为的焦点,求m的值;
(2),直线CD经过点,求的取值范围;
2023-06-27更新 | 288次组卷 | 3卷引用:第3课时 课中 直线与椭圆的位置关系
首页2 3 4 5 6 7 8 9 末页
跳转: 确定
共计 平均难度:一般