组卷网 > 章节选题 > 3.2.2 奇偶性
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 2 道试题
1 . 已知在定义域上是连续不断的函数,对于区间若存在,使得对任意的,都有,则称在区间上存在最大值.
(1)函数在区间存在最大值,求实数m的取值范围;
(2)若函数为奇函数,在上,,易证对任意,函数在区间上存在最大值M,试写出最大值M关于t的函数关系式
(3)若对任意,函数在区间上存在最大值M,设最大值M关于t的函数关系式为,求证:“在定义域上是严格增函数”的充要条件是“在定义域上是严格增函数”.
2023-12-01更新 | 92次组卷 | 5卷引用:上海市格致中学2021-2022学年高一上学期12月月考数学试题
2 . 若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称上的-增长函数.
(1)已知函数,函数,判断是否为区间上的增长函数,并说明理由;
(2)已知函数,且是区间上的-增长函数,求正整数的最小值;
(3)如果是定义域为的奇函数,当时,,且上的增长函数,求实数的取值范围.
2021-01-15更新 | 780次组卷 | 4卷引用:上海市杨浦区控江中学2020-2021学年高一上学期期末数学试题
共计 平均难度:一般