组卷网 > 章节选题 > 选修2-2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 36 道试题
1 . 以下数表构造思路源于我国南宋数学家杨辉所著的《详解九章算法》一书中的“杨辉三角形”.

该表由若干行数字组成,从第二行起,第一行中的数字均等于其“肩上”两数之和,表中最后行仅有一个数,则这个数为(       
A.B.C.D.
2020-04-30更新 | 708次组卷 | 1卷引用:2019届安徽省宣城市郎溪中学高三模拟考试数学(理)试题
2 . 欧拉公式为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数在复平面中位于
A.第一象限B.第二象限C.第三象限D.第四象限
单选题 | 适中(0.65) |
3 . 我国古代的“割圆术”相当于给出已知圆的半径,计算其面积的近似值,进一步计算圆周率的近似值.根据判断,下列近似公式中最接近的是(       
A.B.C.D.
4 . 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是;设实数x的不足近似值和过剩近似值分别为,则x的更为精确的不足近似值或过剩近似值我们知道,若令,则第一次用“调日法”后得的更为精确的过剩近似值,即.若每次都取最简分数,那么第三次用“调日法”后可得的近似分数为(       
A.B.C.D.
单选题 | 适中(0.65) |
名校
5 . 《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为,宽为内接正方形的边长.由刘徽构造的图形还可以得到许多重要的结论,如图3.设为斜边的中点,作直角三角形的内接正方形对角线,过点于点,则下列推理正确的是(       

①由图1和图2面积相等得
②由可得
③由可得
④由可得
A.①②③④B.①②④C.②③④D.①③
2020-04-27更新 | 412次组卷 | 8卷引用:2020届安徽省合肥市高三下学期4月第二次教学质量检测数学(理)试题
6 . 在数学中,泰勒级数用无限项连加式——级数来表示一个函数,包括正弦,余弦,正切三角函数等等,其中泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克•泰勒(Sir Brook Taylor)的名字来命名的.1715年,泰勒提出了一个常用的方法来构建这一系列级数并适用于所有函数,这就是后来被人们所熟知的泰勒级数,并建立了如下指数函数公式:,其中,例如:.试用上述公式估计的近似值为(精确到0.001)(       
A.1.601B.1.642C.1.648D.1.647
2020-03-28更新 | 817次组卷 | 7卷引用:2020届安徽省皖江名校联盟高三下学期第五次联考数学(理)试题
7 . 杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是

A.153B.171C.190D.210
填空题-单空题 | 适中(0.65) |
名校
解题方法
8 . 杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

基于上述规律,可以推测,当时,从左往右第22个数为_____________.
2020-03-20更新 | 257次组卷 | 4卷引用:2020届安徽省六安市第一中学高三下学期模拟卷(六)数学(理)试题
填空题-单空题 | 容易(0.94) |
名校
9 . 南宋数学家杨辉研究了垛积与各类多面体体积的联系,由多面体体积公式导出相应的垛积术公式.例如方亭(正四棱台)体积为,其中为上底边长,为下底边长,为高.杨辉利用沈括隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由个球组成,以下各层的长、宽依次各增加一个球,共有层,最下层(即下底)由个球组成,杨辉给出求方垛中物体总数的公式如下:根据以上材料,我们可得__________.
10 . 在《九章算术》方田章圆田术(刘徽注)中指出,“割之弥细,所失弥少,制之又割,以至于不可割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程确定出来,类比上述结论可得的正值为
A.1B.C.2D.4
共计 平均难度:一般