组卷网 > 知识点选题 > 集合新定义
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 176 道试题
12-13高一上·北京·期末
解答题-问答题 | 困难(0.15) |
名校
1 . 已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.
(1)分别判断下列集合是否为集合的一个二元基底,并说明理由;


(2)若集合是集合的一个元基底,证明:
(3)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底
2023-03-22更新 | 1067次组卷 | 15卷引用:北京市第四中学2023届高三阶段性考试(零模)数学试题
2 . 已知集合,对于集合的非空子集.若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
(1)试判断集合是否为集合的“期待子集”;(直接写出答案,不必说明理由)
(2)如果一个集合中含有三个元素,同时满足①,②,③为偶数.那么称该集合具有性质.对于集合的非空子集,证明:集合是集合的“期待子集”的充要条件是集合具有性质
(3)若的任意含有个元素的子集都是集合的“期待子集”,求的最小值.
2023-03-21更新 | 1048次组卷 | 6卷引用:北京市丰台区2023届高三一模数学试题
解答题-问答题 | 较难(0.4) |
3 . 已知数集.如果对任意的两数中至少有一个属于A,则称数集A具有性质P
(1)分别判断数集是否具有性质,并说明理由;
(2)设数集具有性质P.若,证明:对任意都有的因数.
2023-03-19更新 | 375次组卷 | 2卷引用:北京市朝阳区东北师范大学附属中学朝阳学校2022-2023学年高一下学期3月月考数学试题
4 . 若集合具有以下性质:(i);(ⅱ)若,则,且当时,,则称集合为“闭集”.
(1)试判断集合是否为“闭集”,并说明理由;
(2)设集合是“闭集”,求证:若,则
(3)若集合是一个“闭集”,判断命题“若,则”的真假,并说明理由.
5 . 已知集合),,且.若对任意,当时,存在,使得,则称元完美子集.
(1)判断下列集合是否是的3元完美子集,并说明理由;
                                                

(2)若的3元完美子集,求的最小值;
(3)若)的元完美子集,求证:
2022-05-12更新 | 738次组卷 | 4卷引用:专题16 数列新定义题的解法 微点2 数列新定义题综合训练
6 . 设为非空集合,定义(其中表示有序对),称的任意非空子集上的一个关系.例如时,都是上的关系.设为非空集合上的关系.给出如下定义:①(自反性)若对任意,有,则称上是自反的;②(对称性)若对任意,有,则称上是对称的;③(传递性)若对任意,有,则称上是传递的.如果上关系同时满足上述3条性质,则称上的等价关系.任给集合,定义.
(1)若,问:上关系有多少个?上等价关系有多少个?(不必说明理由)
(2)若集合个元素的非空子集两两交集为空集,且,求证:上的等价关系.
(3)若集合个元素,问:对上的任意等价关系,是否存在的非空子集,其中任意两个交集为空集,且,使得?请判断并说明理由.
2022-10-13更新 | 634次组卷 | 5卷引用:重难点01集合与常用逻辑用语(9种解题模型与方法)(1)
7 . 设集合,集合,如果对于任意元素,都有,则称集合的自邻集.记为集合的所有自邻集中最大元素为的集合的个数.
(1)直接判断集合是否为的自邻集;
(2)比较的大小,并说明理由;
(3)求证:.
2022-10-12更新 | 479次组卷 | 3卷引用:第4章 数列(基础、典型、易错、压轴)-【满分全攻略】2022-2023学年高二数学下学期核心考点+重难点讲练与测试(沪教版2020选修一+选修二)
8 . 求已知集合,且,其中,且.若,且对集合中的任意两个元素都有则称集合有性质
(1)判断集合是否具有性质
(2)若集合具有性质
①求证:的最大值大于等于
②求的元素个数的最大值.
2022-11-08更新 | 189次组卷 | 2卷引用:难关必刷01集合的综合问题(3种题型30题专项训练)-【满分全攻略】(沪教版2020必修第一册)
9 . 已知集合x,其中.定义,若,则称xy正交.
(1)若,写出中与x正交的所有元素;
(2)令,若,证明:为偶数;
(3)若,且A中任意两个元素均正交,分别求出,14时,A中最多可以有多少个元素.
2023-02-03更新 | 661次组卷 | 5卷引用:上海市实验学校2022-2023学年高一上学期期末数学试题
解答题-问答题 | 适中(0.65) |
10 . 若正整数集合n为正整数,且)满足:对任意的均为正整数),两数中至少有一个属于,则称具有性质.(其中,…,表示个变量)
(1)分别判断集合是否具有性质
(2)设正整数集合为正整数,且)具有性质,证明:对任意i为正整数),都是的因数;
(3)若,求的最大值.
2023-01-31更新 | 142次组卷 | 1卷引用:沪教版(2020) 一轮复习 堂堂清 第一单元 1.4 常用逻辑概念
共计 平均难度:一般