组卷网 > 知识点选题 > 数列新定义
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
1 . 设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.
(1)若,判断数列是否是“数列”;
(2)设是等差数列,其首项,公差,且是“数列”,
①求的值;
②设为数列的前项和,证明:
2024-05-09更新 | 150次组卷 | 1卷引用:海南省琼海市嘉积中学2023-2024学年高二下学期高中教学第二次大课堂练习数学试题
2 . 若有穷数列是正整数),满足,且,就称该数列为“数列”.
(1)已知数列是项数为7的数列,且成等比数列,,试写出的每一项;
(2)已知是项数为数列,且构成首项为100,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?
(3)对于给定的正整数,试写出所有项数不超过数列,使得成为数列中的连续项;当时,试求这些数列的前2024项和.
3 . 由个数排列成列的数表称为列的矩阵,简称矩阵,也称为阶方阵,记作:其中表示矩阵中第行第列的数.已知三个阶方阵分别为,其中分别表示中第行第列的数.若,则称生成的线性矩阵.
(1)已知,若生成的线性矩阵,且,求
(2)已知,矩阵,矩阵生成的线性矩阵,且
(i)求
(ii)已知数列满足,数列满足,数列的前项和记为,是否存在正整数,使成立?若存在,求出所有的正整数对;若不存在,请说明理由.
2024-03-03更新 | 687次组卷 | 2卷引用:海南省琼海市嘉积中学2023-2024学年高三下学期开学摸底联考数学试题
共计 平均难度:一般