组卷网 > 知识点选题 > 函数的基本性质
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
22-23高一下·上海宝山·期中
1 . 已知函数的定义域为R,若对任意区间,存在,使,则的生成函数.
(1)求证:的生成函数;
(2)若的生成函数,判断并证明的单调性;
(3)若的生成函数,实数,求的一个生成函数.
2023-05-05更新 | 559次组卷 | 4卷引用:第3课时 课后 函数的单调性(完成)
20-21高一下·上海宝山·期末
解答题-证明题 | 较难(0.4) |
名校
2 . 若定义域为的函数满足:对于任意,都有,则称函数具有性质
(1)设函数的表达式分别为,判断函数是否具有性质,说明理由;
(2)设函数的表达式为,是否存在以及,使得函数具有性质?若存在,求出的值;若不存在,说明理由;
(3)设函数具有性质,且在上的值域恰为;以为周期的函数的表达式为,且在开区间上有且仅有一个零点,求证:
2021-07-12更新 | 1754次组卷 | 9卷引用:7.3 三角函数的图像和性质(难点)(课堂培优)-2021-2022学年高一数学课后培优练(苏教版2019必修第一册)
3 . 若两个函数对任意都有,则称函数在上是疏远的.
(1)已知命题“函数上是疏远的”,试判断该命题的真假.若该命题为真命题,请予以证明;若为假命题,请举反例;
(2)若函数上是疏远的,求实数的取值范围;
(3)已知常数,若函数上是疏远的,求实数的取值范围.
共计 平均难度:一般