组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
共计 28 道试题
2 . 已知双曲线的渐近线为,左顶点为
(1)求双曲线的方程;
(2)直线轴于点,过点的直线交双曲线,直线分别交,若均在圆上,
①求的值,并求点的横坐标;
②求圆面积的取值范围.
2024-06-19更新 | 308次组卷 | 2卷引用:甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷
3 . 泰勒公式是一个非常重要的数学定理,它可以将一个函数在某一点处展开成无限项的多项式.当处的阶导数都存在时,它的公式表达式如下:.注:表示函数在原点处的一阶导数,表示在原点处的二阶导数,以此类推,表示在原点处的阶导数.
(1)根据公式估算的值,精确到小数点后两位;
(2)当时,比较的大小,并证明;
(3)设,证明:.
2024-05-23更新 | 652次组卷 | 3卷引用:甘肃省张掖市某校2023-2024学年高三下学期模拟考试数学试题
4 . 已知函数及其导函数的定义域均为.设,曲线在点处的切线交轴于点.当时,设曲线在点处的切线交轴于点.依此类推,称得到的数列为函数关于的“数列”.
(1)若是函数关于的“数列”,求的值;
(2)若是函数关于的“数列”,记,证明:是等比数列,并求出其公比;
(3)若,则对任意给定的非零实数,是否存在,使得函数关于的“数列”为周期数列?若存在,求出所有满足条件的;若不存在,请说明理由.
2024-04-01更新 | 971次组卷 | 6卷引用:甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷
5 . 已知函数
(1)若有相同的单调区间,求实数的值;
(2)若方程有两个不同的实根,证明:.
2024-03-22更新 | 833次组卷 | 4卷引用:甘肃省张掖市某校2024届高三下学期模拟考试数学试题
6 . 某制药公司研制了一款针对某种病毒的新疫苗.该病毒一般通过病鼠与白鼠之间的接触传染,现有只白鼠,每只白鼠在接触病鼠后被感染的概率为,被感染的白鼠数用随机变量X表示,假设每只白鼠是否被感染之间相互独立
(1)若,求数学期望
(2)接种疫苗后的白鼠被病鼠感染的概率为,现有两个不同的研究团队理论研究发现概率与参数的取值有关.团队A提出函数模型为,团队B提出函数模型为.现将100只接种疫苗后的白鼠分成10组,每组10只,进行实验,随机变量表示第组被感染的白鼠数,将随机变量的实验结果绘制成频数分布图,如图所示.

   

(i)试写出事件“”发生的概率表达式(用表示,组合数不必计算);
(ⅱ)在统计学中,若参数时使得概率最大,称的最大似然估计.根据这一原理和团队AB提出的函数模型,判断哪个团队的函数模型可以求出的最大似然估计,并求出最大似然估计.参考数据:.
2024-02-23更新 | 1889次组卷 | 10卷引用:甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷
7 . 已知数列为有穷正整数数列.若数列A满足如下两个性质,则称数列Amk减数列:

②对于,使得的正整数对k个.
(1)写出所有4的1减数列;
(2)若存在m的6减数列,证明:
(3)若存在2024的k减数列,求k的最大值.
9 . 已知函数,(其中a为非零实数).
(1)讨论的单调性;
(2)若函数(e为自然对数的底数)有两个零点.
①求实数a的取值范围;
②设两个零点分别为,求证:
2021-12-08更新 | 1982次组卷 | 10卷引用:甘肃省张掖市2021-2022学年高三第二次全市联考(3月)理科数学试题
10 . 已知函数的导函数满足:,且,当时,恒成立,则实数a的取值范围是______________
共计 平均难度:一般