名校
解题方法
1 . 在中,角为锐角,的面积为,且,则周长的最小值为( )
A. | B. | C. | D. |
您最近一年使用:0次
7日内更新
|
205次组卷
|
3卷引用:甘肃省张掖市部分学校2025届高三上学期10月质量检测数学试卷
名校
解题方法
2 . 已知双曲线的渐近线为,左顶点为.
(1)求双曲线的方程;
(2)直线交轴于点,过点的直线交双曲线于,,直线,分别交于,,若,,,均在圆上,
①求的值,并求点的横坐标;
②求圆面积的取值范围.
(1)求双曲线的方程;
(2)直线交轴于点,过点的直线交双曲线于,,直线,分别交于,,若,,,均在圆上,
①求的值,并求点的横坐标;
②求圆面积的取值范围.
您最近一年使用:0次
名校
解题方法
3 . 泰勒公式是一个非常重要的数学定理,它可以将一个函数在某一点处展开成无限项的多项式.当在处的阶导数都存在时,它的公式表达式如下:.注:表示函数在原点处的一阶导数,表示在原点处的二阶导数,以此类推,表示在原点处的阶导数.
(1)根据公式估算的值,精确到小数点后两位;
(2)当时,比较与的大小,并证明;
(3)设,证明:.
(1)根据公式估算的值,精确到小数点后两位;
(2)当时,比较与的大小,并证明;
(3)设,证明:.
您最近一年使用:0次
2024-05-23更新
|
652次组卷
|
3卷引用:甘肃省张掖市某校2023-2024学年高三下学期模拟考试数学试题
甘肃省张掖市某校2023-2024学年高三下学期模拟考试数学试题河北省衡水市第二中学2023-2024学年高二下学期6月期末素养评估数学试题(已下线)专题7 以新定义为背景的相关问题【讲】(高二期末压轴专项)
名校
解题方法
4 . 已知函数及其导函数的定义域均为.设,曲线在点处的切线交轴于点.当时,设曲线在点处的切线交轴于点.依此类推,称得到的数列为函数关于的“数列”.
(1)若,是函数关于的“数列”,求的值;
(2)若,是函数关于的“数列”,记,证明:是等比数列,并求出其公比;
(3)若,则对任意给定的非零实数,是否存在,使得函数关于的“数列”为周期数列?若存在,求出所有满足条件的;若不存在,请说明理由.
(1)若,是函数关于的“数列”,求的值;
(2)若,是函数关于的“数列”,记,证明:是等比数列,并求出其公比;
(3)若,则对任意给定的非零实数,是否存在,使得函数关于的“数列”为周期数列?若存在,求出所有满足条件的;若不存在,请说明理由.
您最近一年使用:0次
2024-04-01更新
|
971次组卷
|
6卷引用:甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷
甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷上海市浦东新区2024届高三下学期期中教学质量检测数学试卷(已下线)数学(上海卷02)(已下线)专题09 导数及其应用 压轴题(六大题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(沪教版2020选择性必修,上海专用)广东省东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三下学期第五次六校联考数学试题(已下线)专题3 数列中的新定义压轴大题(过关集训)
名校
5 . 已知函数,
(1)若与有相同的单调区间,求实数的值;
(2)若方程有两个不同的实根,证明:.
(1)若与有相同的单调区间,求实数的值;
(2)若方程有两个不同的实根,证明:.
您最近一年使用:0次
2024-03-22更新
|
833次组卷
|
4卷引用:甘肃省张掖市某校2024届高三下学期模拟考试数学试题
甘肃省张掖市某校2024届高三下学期模拟考试数学试题四川省成都外国语学校2024届高三下学期高考模拟(二)数学(理科)试题(已下线)专题1 导数与函数的单调性(恒单调、存在单调区间、不单调)【练】四川省雅安市神州天立学校2024届高三下学期高考冲刺热身(四)数学(理)试题
名校
6 . 某制药公司研制了一款针对某种病毒的新疫苗.该病毒一般通过病鼠与白鼠之间的接触传染,现有只白鼠,每只白鼠在接触病鼠后被感染的概率为,被感染的白鼠数用随机变量X表示,假设每只白鼠是否被感染之间相互独立
(1)若,求数学期望;
(2)接种疫苗后的白鼠被病鼠感染的概率为,现有两个不同的研究团队理论研究发现概率与参数的取值有关.团队A提出函数模型为,团队B提出函数模型为.现将100只接种疫苗后的白鼠分成10组,每组10只,进行实验,随机变量表示第组被感染的白鼠数,将随机变量的实验结果绘制成频数分布图,如图所示.
(ⅱ)在统计学中,若参数时使得概率最大,称是的最大似然估计.根据这一原理和团队A,B提出的函数模型,判断哪个团队的函数模型可以求出的最大似然估计,并求出最大似然估计.参考数据:.
(1)若,求数学期望;
(2)接种疫苗后的白鼠被病鼠感染的概率为,现有两个不同的研究团队理论研究发现概率与参数的取值有关.团队A提出函数模型为,团队B提出函数模型为.现将100只接种疫苗后的白鼠分成10组,每组10只,进行实验,随机变量表示第组被感染的白鼠数,将随机变量的实验结果绘制成频数分布图,如图所示.
(i)试写出事件“”发生的概率表达式(用表示,组合数不必计算);
(ⅱ)在统计学中,若参数时使得概率最大,称是的最大似然估计.根据这一原理和团队A,B提出的函数模型,判断哪个团队的函数模型可以求出的最大似然估计,并求出最大似然估计.参考数据:.
您最近一年使用:0次
2024-02-23更新
|
1889次组卷
|
10卷引用:甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷
甘肃省张掖市某校2024届高三下学期第三次模拟数学试卷浙江省9+1高中联盟2022-2023学年高二下学期期中数学试题(已下线)广东省深圳中学2023届高三5月适应性测试数学试题湖南省长沙市雅礼中学2023-2024学年高三上学期月考(五)(1月期末)数学试卷辽宁省沈阳市东北育才学校高中部2023-2024学年高三第六次模拟考试暨假期质量测试数学试题辽宁省八市八校2024届度高三第二次联合模拟考试数学试题浙江省余姚中学2023-2024学年高二下学期期中考试数学试题广东省八校2024-2025学年高三上学期9月联合检测数学试卷(已下线)第五章 概率统计创新问题 专题一 概率统计决策问题 微点3 概率统计决策问题综合训练【培优版】(已下线)第五章 概率统计创新问题 专题七 概率统计中的新定义问题 微点4 概率统计中的新定义问题(四)【培优版】
名校
解题方法
7 . 已知数列为有穷正整数数列.若数列A满足如下两个性质,则称数列A为m的k减数列:
①;
②对于,使得的正整数对有k个.
(1)写出所有4的1减数列;
(2)若存在m的6减数列,证明:;
(3)若存在2024的k减数列,求k的最大值.
①;
②对于,使得的正整数对有k个.
(1)写出所有4的1减数列;
(2)若存在m的6减数列,证明:;
(3)若存在2024的k减数列,求k的最大值.
您最近一年使用:0次
2024-01-25更新
|
4194次组卷
|
10卷引用:甘肃省张掖市2023-2024学年高三下学期第三次诊断考试数学试卷
名校
8 . 已知函数为自然对数的底数
(1)求在处的切线方程;
(2)当时,,求实数的最大值;
(3)证明:当时,在处取极小值.
(1)求在处的切线方程;
(2)当时,,求实数的最大值;
(3)证明:当时,在处取极小值.
您最近一年使用:0次
2022-02-02更新
|
1712次组卷
|
4卷引用:甘肃省张掖市某重点校2022-2023学年高三上学期第九次检测数学(理)试题
名校
9 . 已知函数,(其中a为非零实数).
(1)讨论的单调性;
(2)若函数(e为自然对数的底数)有两个零点.
①求实数a的取值范围;
②设两个零点分别为、,求证:.
(1)讨论的单调性;
(2)若函数(e为自然对数的底数)有两个零点.
①求实数a的取值范围;
②设两个零点分别为、,求证:.
您最近一年使用:0次
2021-12-08更新
|
1982次组卷
|
10卷引用:甘肃省张掖市2021-2022学年高三第二次全市联考(3月)理科数学试题
甘肃省张掖市2021-2022学年高三第二次全市联考(3月)理科数学试题湖南省炎德英才2022届高三上学期12月联考数学试题重庆市南开中学2022届高三上学期12月月考数学试题湖南省名校联合体2021-2022学年高三上学期12月联考数学试题(已下线)专题05 导数与函数的零点问题(练)--第一篇 热点、难点突破篇-《2022年高考数学二轮复习讲练测(新高考·全国卷)》湖南师范大学附属中学2021-2022学年高三上学期12月联考数学试题(已下线)专题3-2 含参讨论-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)安徽省滁州市定远县育才学校2023届高三上学期期末数学试题江苏省扬州市邗江中学2021-2022学年高二上学期期末模拟数学试题(已下线)第八章 利用导数证明不等式专题八 帕德逼近与不等式的证明 微点2 帕德逼近与不等式的证明综合训练
名校
解题方法
10 . 已知函数的导函数满足:,且,当时,恒成立,则实数a的取值范围是______________ .
您最近一年使用:0次
2021-11-29更新
|
2174次组卷
|
11卷引用:甘肃省民乐县第一中学2021-2022学年上学期高三第二次诊断(12月)考试数学(理)试题
甘肃省民乐县第一中学2021-2022学年上学期高三第二次诊断(12月)考试数学(理)试题重庆市第一中学2022届高三上学期期中数学试题(已下线)专题03 利用导数解不等式与不等式恒成立问题(练)--第一篇 热点、难点突破篇-《2022年高考数学二轮复习讲练测(新高考·全国卷)》湖南省长沙市第一中学2022届高三下学期月考(七)数学试题江西省(东乡一中、都昌一中、丰城中学、赣州中学、景德镇二中、上饶中学、上栗中学、新建二中)新八校2022届高三下学期第二次联考数学(理)试题广东省深圳外国语学校(集团)2023届高三上学期第一次月考数学试题湖南省邵阳市第二中学2022-2023学年高三上学期7月阶段性考试(三)数学试题山东省济宁市育才中学2022-2023学年高三上学期开学数学试题(已下线)专题04 盘点处理不等式恒成立的六种方法-2(已下线)第六章 导数与不等式恒成立问题 专题一 两类经典不等式 微点2 两个重要的对数不等式广东省广州市育才中学2023-2024学年高二下学期期中数学试题