组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 389 道试题
解答题-证明题 | 适中(0.65) |
1 . 《几何原本》是古希腊数学家欧几里得得所著的一部数学著作,在《几何原本》第六卷给出了内角平分线定理,其内容为:在一个三角形中,三角形一个内角的角平分线内分对边所成的两条线段,与这个角的两邻边对应成比例.例如,在中(图1),的平分线,则有.

   

(1)试证明角平分线定理;
(2)如图2,已知的重心为,内心为,若的连线.求证:.
2023-09-16更新 | 299次组卷 | 2卷引用:广西钦州市灵山县天山中学2023-2024学年高一上学期入学考试数学试题
2 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正弦函数的二倍角公式,请写出双曲正弦函数的一个正确的结论:_____________.(只写出即可,不要求证明);
(2),不等式恒成立,求实数的取值范围;
(3)若,试比较的大小关系,并证明你的结论.
2024-01-27更新 | 913次组卷 | 8卷引用:福建省宁德市2023-2024学年高一上学期1月期末质量检测数学试题
3 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法,
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入:(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
请根据阅读材料解答下列问题
(1)已知如,求___________.
(2)若,解方程.
(3)若正数满足,求的最小值.
4 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴,当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:___________.
(2)若正数满足,则的最小值为___________.
2023-10-14更新 | 159次组卷 | 1卷引用:江苏省盐城市响水中学2023-2024学年高一上学期10月学情分析考试数学试题
5 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.
例如,已知,求证:
证明:原式
波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.
请根据上述材料解答下列问题:
(1)已知,求的值;
(2)若,解方程
(3)若正数满足,求的最小值.
2022-10-21更新 | 434次组卷 | 4卷引用:广东省中山市2022-2023学年高一上学期第一次调研数学试题
6 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察:(2)整体设元:(3)整体代入:(4)整体求和等.例如,,求证:.证明:原式.波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.例如:在的条件下,当x为何值时,有最小值,最小值是多少?
2022-10-18更新 | 144次组卷 | 1卷引用:江苏省盐城中学2022-2023学年高一上学期第一次月考数学试题
7 . 悬索桥(如图)的外观大漂亮,悬索的形状是平面几何中的悬链线.年莱布尼兹和伯努利推导出某链线的方程为,其中为参数.当时,该方程就是双曲余弦函数,类似的我们有双曲正弦函数.

(1)从下列三个结论中选择一个进行证明,并求函数的最小值;


.
(2)求证:.
2022-02-01更新 | 1267次组卷 | 7卷引用:江苏省苏州市2021-2022学年高一上学期期末数学试题
8 . 《九章算术》是中国古代的一部数学专著,其中将由四个直角三角形组成的四面体称为“鳖臑”.在直四棱柱中,EF分别为线段上的中点.

(1)求证:平面
(2)从三棱锥中选择合适的两条棱填空:__________⊥__________,使得三棱锥为“鳖臑”;并证明你的结论.
9 . 拉格朗日中值定理是微分学的基本定理之一,其内容为:如果函数在闭区间上的图象连续不断,在开区间内的导数为,那么在区间内存在点,使得成立.设,其中为自然对数的底数,.易知,在实数集上有唯一零点,且

(1)证明:当时,
(2)从图形上看,函数的零点就是函数的图象与轴交点的横坐标.直接求解的零点是困难的,运用牛顿法,我们可以得到零点的近似解:先用二分法,可在中选定一个作为的初始近似值,使得,然后在点处作曲线的切线,切线与轴的交点的横坐标为,称的一次近似值;在点处作曲线的切线,切线与轴的交点的横坐标为,称的二次近似值;重复以上过程,得的近似值序列
①当时,证明:
②根据①的结论,运用数学归纳法可以证得:为递减数列,且.请以此为前提条件,证明:
2024-05-31更新 | 570次组卷 | 4卷引用:2024届广东省大湾区高三下学期联合模拟考试(二)数学试题
10 . 帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,函数处的阶帕德近似定义为:,且满足:.(注:的导数)已知处的阶帕德近似为.
(1)求实数的值;
(2)证明:当时,
(3)设为实数,讨论方程的解的个数.
2024-04-26更新 | 358次组卷 | 3卷引用:湖北省“荆、荆、襄、宜四地七校”考试联盟2023-2024学年高二下学期期中联考数学试卷
共计 平均难度:一般