组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 848 道试题
1 . 已知函数,其中
(1)若n=8,,求的最大值;
(2)若,求;(用n表示)
(3)若,求证:
7日内更新 | 100次组卷 | 1卷引用:江苏省泰州中学2023-2024学年高二下学期期中考试数学试题
2 . 已知F为抛物线C的焦点,点AC上,.点P(0,-2),MN是抛物线上不同两点,直线PM和直线PN的斜率分别为.
(1)求C的方程;
(2)存在点Q,当直线MN经过点Q时,恒成立,请求出满足条件的所有点Q的坐标;
(3)对于(2)中的一个点Q,当直线MN经过点Q时,|MN|存在最小值,试求出这个最小值.
3 . 有一个益智类的古堡探险闯关游戏,玩家每局都有甲乙两座不同的古堡可供选择.已知某玩家古堡甲闯关成功的概率为,古堡乙闯关成功的概率为.若该玩家第一局选择古堡甲闯关的概率为,前一局选择了古堡甲闯关,则继续选择古堡甲闯关的概率为;前一局选择了古堡乙闯关,则继续选择古堡乙闯关的概率为.
(1)求该玩家第一局闯关成功的概率;
(2)记该玩家第局选择古堡甲闯关的概率为,第局闯关成功的概率为.
(i)求的表达式;
(ii)当时,求证:.
2024-05-19更新 | 249次组卷 | 1卷引用:江苏省靖江高级中学2023-2024学年高二下学期期中考试数学试题
4 . “熵”常用来判断系统中信息含量的多少,也用来判断概率分布中随机变量的不确定性大小,一般熵越大表示随机变量的不确定性越明显.定义:随机变量对应取值的概率为,其单位为bit的熵为,且.(当,规定.)
(1)若抛掷一枚硬币1次,正面向上的概率为,正面向上的次数为,分别比较时对应的大小,并根据你的理解说明结论的实际含义;
(2)若拋郑一枚质地均匀的硬币次,设表示正面向上的总次数,表示第次反面向上的次数(0或1).表示正面向上次且第次反面向上次的概率,如时,.对于两个离散的随机变量,其单位为bit的联合熵记为,且
(ⅰ)当时,求的值;
(ⅱ)求证:
2024-05-15更新 | 882次组卷 | 1卷引用:江苏省南通、扬州、泰州七市2024届高三第三次调研测试数学试题
5 . 已知数列的前n项和为.若对每一个,有且仅有一个,使得,则称为“X数列”.记,称数列的“余项数列”.
(1)若的前四项依次为0,1,,1,试判断是否为“X数列”,并说明理由;
(2)若,证明为“X数列”,并求它的“余项数列”的通项公式;
(3)已知正项数列为“X数列”,且的“余项数列”为等差数列,证明:
2024-05-12更新 | 1131次组卷 | 1卷引用:江苏省南京市2024届高三第二次模拟考试数学试题
6 . 已知椭圆经过分别为椭圆的左顶点、右顶点、上顶点.
(1)求椭圆的标准方程;
(2)过轴上点(点在椭圆长轴上)作直线交椭圆两点,且,若,求点的坐标;
(3)过点作直线交椭圆点,交直线,直线轴相交于,求证:为定值,并求此定值.(其中分别为直线和直线l的斜率).
2024-05-11更新 | 168次组卷 | 1卷引用:江苏省盐城市三校2023-2024学年高二下学期4月期中联考数学试题
7 . 已知双曲线E的左,右焦点分别为,离心率为2,点B,直线与圆相切.
(1)求双曲线E方程;
(2)过的直线l与双曲线E交于MN两点,
①若,求的面积取值范围:
②若直线l的斜率为k,是否存在双曲线E上一点Q以及x轴上一点P,使四边形PMQN为菱形?若存在,求出;若不存在,请说明理由.
2024-05-05更新 | 231次组卷 | 1卷引用:江苏省海门中学2023-2024学年高二下学期期中考试数学试卷
8 . 设函数),其中为自然对数的底数,为实数.
(1)若上单调递增,求实数k的取值范围;
(2)求的零点的个数:;
(3)若不等式上恒成立,求k的取值范围.
2024-05-05更新 | 175次组卷 | 1卷引用:江苏省南菁高级中学实验班2023-2024学年高二下学期期中考试数学试卷
2024·江西上饶·二模
解答题-问答题 | 困难(0.15) |
9 . 对于数列,定义“变换”:将数列变换成数列,其中,且.这种“变换”记作,继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为0时变换结束.
(1)写出数列,经过6次“变换”后得到的数列;
(2)若不全相等,判断数列经过不断的“变换”是否会结束,并说明理由;
(3)设数列经过次“变换”得到的数列各项之和最小,求的最小值.
2024-05-03更新 | 601次组卷 | 2卷引用:数学(江苏专用03)
10 . 三角形的布洛卡点是法国数学家、数学教育学家克洛尔于1816年首次发现,但他的发现并未被当时的人们所注意.1875年,布洛卡点被一个数学爱好者布洛卡重新发现,并用他的名字命名.当内一点满足条件时,则称点的布洛卡点,角为布洛卡角.如图,在中,角所对边长分别为,点的布洛卡点,其布洛卡角为

(1)若.求证:
的面积);
为等边三角形.
(2)若,求证:
2024-04-28更新 | 497次组卷 | 2卷引用:江苏省常州市教育学会2023-2024学年高一下学期4月学业水平监测数学试题
共计 平均难度:一般