组卷网 > 知识点选题 > 频率与概率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 35 道试题
1 . 某同学做立定投篮训练,共做3组,每组投篮次数和命中的次数如下表:

第一组

第二组

第三组

合计

投篮次数

100

200

300

600

命中的次数

68

124

174

366

命中的频率

0.68

0.62

0.58

0.61

根据表中的数据信息,用频率估计一次投篮命中的概率,则使误差较小、可能性大的估计值是(       
A.0.58B.0.61C.0.62D.0.68
2023-07-03更新 | 179次组卷 | 3卷引用:山西省三重教育2022-2023学年高一下学期期末数学试题
2 . 某公司有员工140人,为调查员工对薪酬待遇的满意度,现随机抽取了15人,通过问卷调查,有3人对薪酬不满意.
(1)试估计公司中对薪酬不满意的人数;
(2)从15名调查对象中抽取2人,用表示其中对薪酬不满意的人数,试求的数学期望
(3)实际上,由于问题比较敏感,被调查者为了保护自己的隐私往往会做出相反的回答,导致调查数据失真.为此对调查方法进行优化,现向15名调查对象提供两个问题:
问题A:你对公司薪酬是否不满意?
问题B:现场抛一枚硬币,是否正面朝上?
在一个密闭房间里有一个箱子,箱子中放入大小相同的10个小球,其中黑色小球7个,白色小球3个,每位调查对象进入房间后,从箱子中摸出一个小球后放回,若是黑球,则回答问题A,若是白球,则抛硬币完成问题B.若有6人回答“是”,试用全概率公式估计公司中对薪酬不满意的人数.
2023-05-01更新 | 1054次组卷 | 3卷引用:山西省运城市康杰中学2022-2023学年高二下学期第二次月考数学试题
3 . 对某地区过去20年的年降水量(单位:毫米)进行统计,得到以下数据:


将年降水量处于799毫米及以下800至999毫米1000毫米及以上分别指定为降水量偏少适中偏多三个等级.
(1)将年降水量处于各等级的频率作为概率,分别计算该地区年降水量偏少适中偏多的概率;
(2)根据经验,种植甲、乙、丙三种农作物在年降水量偏少适中偏多的情况下可产出的年利润(单位:千元/亩)如下表所示.你认为这三种作物中,哪一种最适合在该地区推广种植?请说明理由.

年降水量


作物种类
偏少适中偏多
8128
12107
71012
2023-04-20更新 | 302次组卷 | 6卷引用:山西省2022-2023学年高二下学期期中数学试题
4 . 某超市计划按月订购一种冷饮,根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于,需求量为600瓶;如果最高气温位于区间内,需求量为300瓶;如果最高气温低于,需求量为100瓶.为了确定6月份的订购计划,统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:
最高气温
天数36253818
将最高气温位于各区间的频率视为最高气温位于该区间的概率,若6月份这种冷饮一天的需求量不超过x瓶的概率估计值为0.1,则       
A.100B.300C.400D.600
2023-02-04更新 | 224次组卷 | 4卷引用:山西省晋中市2020-2021学年高三下学期4月月考理科数学试题
智能选题,一键自动生成优质试卷~
5 . 某工厂两条生产线分别生产甲、乙两种元件,元件质量按测试指标划分为:指标大于或等于76为正品,小于76为次品.现分别从两条生产线随机抽取元件甲和元件乙各100件进行检测,检测结果统计如下:
测试指标
元件甲12840337
元件乙17840287
(1)试分别估计生产一件元件甲、一件元件乙为正品的概率;
(2)生产一件元件甲,若是正品则盈利90元,若是次品则亏损10元;生产一件元件乙,若是正品则盈利100元,若是次品则亏损20元,则在(1)的前提下:
①求生产5件元件乙所获得的利润不少于300的概率;
②记XY分别为生产1000件元件甲和1000件元件乙所得的总利润,试比较的大小.(结论不要求证明)
2022-09-11更新 | 532次组卷 | 3卷引用:山西省大同市实验中学2023届高三上学期高考考前模拟(二)数学试题
6 . 已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:据此估计,小张三次射击恰有两次命中十环的概率约为__________.
2022-07-17更新 | 1208次组卷 | 8卷引用:山西省晋中市平遥县第二中学校2021-2022学年高一下学期期末数学试题
7 . 为减少水资源的浪费,某市政府计划对居民生活用水费用实施阶梯式水价制度.为了确定一个较为合理的用水标准,有关部门通过随机抽样调查的方式,获得过去一年4000户居民的月均用水量数据(单位:吨),并根据获得的数据制作了频率分布表:

组号

分组

频数

频率

1

1240

0.31

0.031

2

0.046

3

776

0.194

0.0194

4

72

0.018

5

48

0.012

0.0012

6

0.006

0.0006

(1)求的值;
(2)求所获得数据中“月均用水量不低于30吨”发生的频率;
(3)若在第4,5,6组用按比例分配的分层抽样的方法随机抽取6户做问卷调查,并在这6户中任选2户进行座谈会,求这2户中恰有1户是“月均用水量不低于50吨”的概率.
2022-07-04更新 | 130次组卷 | 1卷引用:山西省2021-2022学年高一下学期期末数学试题
8 . 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米石,验得米内夹谷,抽样取米一把,数得粒内夹谷粒,则这批米内夹谷约为(       
A.B.C.D.
2022-06-27更新 | 368次组卷 | 3卷引用:山西省运城市景胜中学2021-2022学年高一下学期6月月考数学(文)试题
9 . 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了件产品,产品的质量情况统计如下表:

一级品

二级品

合计

甲机床

乙机床

合计

(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)根据的独立性检验,能否认为甲机床的产品质量与乙机床的产品质量有差异?
附:

2022-05-31更新 | 147次组卷 | 1卷引用:山西省怀仁市第一中学校云东校区2021-2022学年高二下学期第三次月考数学(文)试题
10 . 为了研究高三年级学生的性别和身高是否大于的关联性,同学甲调查丁某中学高三年级所有学生,整理得到列联表1,同学乙从该校高三学生中获取容量为40的有放回简单随机样本,由样本数据整理得到列联表2.
表1单位:人
性别身高合计
811697
2875103
合计10991200
表2单位:人
性别身高合计
15621
91019
合计241640
(1)利用表1,通过比较不低于的学生在女生和男生中的比率,判断该中学高三年级学生的性别和身高是否有关联,如果有关联,请解释它们之间如何相互影响;
(2)利用表2,依据的独立性检验,推断该中学高三年级学生的性别和身高是否有关联,并解释所得结论的实际含义:
2022-05-04更新 | 189次组卷 | 1卷引用:山西省太原市英才学校高中部2021-2022学年高二下学期线上期中数学试题
共计 平均难度:一般