组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 18 道试题
1 . 据中国日报网报道:TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算全球第一“神威·太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越小速度越快,单位是MIPS
测试1测试2测试3测试4测试5测试6测试7测试8测试9测试10测试11测试12
品牌A3691041121746614
品牌B2854258155121021
经过了解,前6次测试是打开含有文字与表格的文件,后6次测试是打开含有文字与图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
2020-12-16更新 | 61次组卷 | 1卷引用:北京景山学校远洋分校2020—2021 学年高一年级上学期第二次月考数学试题
2 . 某市电视台举办纪念红军长征胜利知识回答活动,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.

公园

获得签名人数

45

60

30

15

然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.
(1)求此活动中各公园幸运之星的人数;
(2)若乙公园中每位幸运之星对每个问题答对的概率均为,求乙公园中恰好2位幸运之星获得纪念品的概率;
(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为,求的分布列、期望及方差.
3 . “十一”黄金周某公园迎来了旅游高峰期,为了引导游客有序游园,该公园每天分别在时,时,时,时公布实时在园人数.下表记录了日至日的实时在园人数:
时在园人数
时在园人数
时在园人数
时在园人数
通常用公园实时在园人数与公园的最大承载量(同一时段在园人数的饱和量)之比来表示游园舒适度,以下称为“舒适”,已知该公园的最大承载量是万人.
(Ⅰ)甲同学从日至日中随机选天的下午时去该公园游览,求他遇上“舒适”的概率;
(Ⅱ)从日至日中任选两天,记这两天中这个时间的游览舒适度都为“舒适”的天数为,求的分布列和数学期望;
(Ⅲ)根据日至日每天时的在园人数,判断从哪天开始连续三天时的在园人数的方差最大?(只需写出结论)
4 . 在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:
卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类
有效答卷份数380550330410400430
习惯良好频率0.60.90.80.70.650.6
假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.
(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;
(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;
(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差的大小关系.
智能选题,一键自动生成优质试卷~
5 . 设盒子中装有6个红球,4个白球,2个黑球,且规定:取出一个红球得分,取出一个白球得分,取出一个黑球得分,其中都为正整数.
1)当时,从该盒子中依次任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求的分布列;
2)当时,从该盒子中任取(每球取到的机会均等)1个球,记随机变量为取出此球所得分数,若,求
2020-03-13更新 | 322次组卷 | 1卷引用:2019届北京市清华大学附属中学高三上学期开学考试数学(理)试题
6 . 为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表:
             比例        学校
等级
学校A学校B学校C学校D学校E学校F学校G学校H
优秀8%3%2%9%1%22%2%3%
良好37%50%23%30%45%46%37%35%
及格22%30%33%26%22%17%23%38%
不及格33%17%42%35%32%15%38%24%

(1)从8所学校中随机选出一所学校,求该校为先进校的概率;
(2)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;
(3)设8所学校优秀比例的方差为,良好及其以下比例之和的方差为,比较的大小.(只写出结果)
2020-02-09更新 | 519次组卷 | 8卷引用:2020届北京市通州区高三第一学期期末考试数学试题
7 . 某校在学年期末举行“我最喜欢的文化课”评选活动,投票规则是一人一票,高一(1)班44名学生和高一(7)班45名学生的投票结果如下表(无废票):
语文数学外语物理化学生物政治历史地理
高一(1)班697545332
高一(7)班6456523
该校把上表的数据作为样本,把两个班同一学科的得票之和定义为该年级该学科的“好感指数”.
(Ⅰ)如果数学学科的“好感指数”比高一年级其他文化课都高,求的所有取值;
(Ⅱ)从高一(1)班投票给政治、历史、地理的学生中任意选取位同学,设随机变量为投票给地理学科的人数,求的分布列和期望;
(Ⅲ)当为何值时,高一年级的语文、数学、外语三科的“好感指数”的方差最小?(结论不要求证明)
2019-07-09更新 | 356次组卷 | 1卷引用:2019年北京市西城区第二学期期末高二数学试卷
8 . 某工厂的机器上存在一种易损元件,这种元件发生损坏时,需要及时维修. 现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.
日期12345678910
甲维修的元件数3546463784
乙维修的元件数4745545547


1)从这天中,随机选取一天,求甲维修的元件数不少于5件的概率;
2)试比较这10天中甲维修的元件数的方差与乙维修的元件数的方差的大小.(只需写出结论);
3)由于甲、乙的任务量大,拟增加工人,为使增加工人后平均每人每天维修的元件不超过3件,请利用上表数据估计最少需要增加几名工人.
2019-05-10更新 | 263次组卷 | 1卷引用:【区级联考】北京市东城区2019届高三下学期综合练习(二模)数学(文)试题
9 . 2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.

2007年

2008年

2009年

2010年

2011年

2012年

2013年

2014年

2015年

2016年

城镇

18.66

20.25

22.79

25

27.1

28.3

31.6

32.9

34.6

36.6

农村

23.3

24.8

26.5

27.9

30.7

32.4

34.1

37.1

41.2

45.8


(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;
(Ⅱ)在给出的10年数据中,随机抽取三年,记为同年中农村人均住房建筑面积超过城镇人均住房建筑面积4平方米的年数,求的分布列和数学期望
(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为,农村人均住房面积的方差为,判断的大小.(只需写出结论).
2019-04-03更新 | 790次组卷 | 4卷引用:【区级联考】北京延庆区2019届高三一模数学(理)试题
10 . 由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860   6520   7326   6798   7325   8430   8215   7453   7446   6754
7638   6834   6460   6830   9860   8753   9450   9860   7290   7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为

组别

步数分组

频数

2

10

2

(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,试分别比较与以的大小;(只需写出结论)
(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.
共计 平均难度:一般