2020高三·全国·专题练习
名校
1 . 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
您最近一年使用:0次
2022-11-08更新
|
2018次组卷
|
32卷引用:专题11.9 离散型随机变量的均值与方差(讲)【理】-《2020年高考一轮复习讲练测》
(已下线)专题11.9 离散型随机变量的均值与方差(讲)【理】-《2020年高考一轮复习讲练测》(已下线)专题06 离散型随机变量的期望与方差(第四篇)-备战2020年高考数学大题精做之解答题题型全覆盖山西省朔州市应县第一中学校2019-2020学年高二下学期期中数学(理)试题(已下线)专题11.5 离散型随机变量的分布列、均值与方差 (精讲)-2021年高考数学(理)一轮复习讲练测湖北省荆州中学2024届高三下学期第三次适应性考试数学试题(已下线)7.3 离散型随机变量的数字特征(精讲)-2020-2021学年高二数学一隅三反系列(人教A版2019选择性必修第三册)(已下线)4.2.4随机变量的数字特征(2)B提高练(已下线)第二章 随机变量及其分布【专项训练】-2020-2021学年高二数学(理)下学期期末专项复习(人教A版选修2-3)(已下线)【新教材精创】7.3.2离散型随机变量的方差 -B提高练辽宁省凤城市第一中学2021-2022学年高三上学期10月月考数学试题人教A版(2019) 选修第三册 实战演练 第七章验收检测浙江省台州市九校联盟2021-2022学年高二下学期期中联考数学试题宁夏回族自治区银川一中2021-2022学年高二下学期期中考试数学(理)试题广东省佛山市南海一中2021-2022学年高二下学期第二次大测数学试题辽宁省沈阳市市级重点高中联合体2021-2022学年高二下学期期测试末数学试题江苏省苏州外国语学校2021-2022学年高二下学期期末数学试题(已下线)13.3 二项分布、超几何分布与数字特征(已下线)第70讲 随机变量及其概率分布、均值与方差(已下线)7.3.2离散型随机变量的方差(精讲)(已下线)第08讲 离散型随机变量的期望方差及其性质3种题型江苏省淮安市盱眙中学2023届高三七模数学试题(已下线)8.2.2离散型随机变量的数字特征-【帮课堂】2022-2023学年高二数学同步精品讲义(苏教版2019选择性必修第二册)(已下线)7.3.1 离散型随机变量的均值(2)(已下线)7.3.2 离散型随机变量的方差(2)(已下线)7.3.2 离散型随机变量的方差(1)北师大版(2019) 选修第一册 数学奇书 学业评价(四十二) 离散型随机变量的方差江西省上高二中2022-2023学年高二下学期2月月考数学试题(已下线)7.3离散型随机变量的数字特征 第二练 强化考点训练江苏省扬州市广陵区红桥高级中学2023-2024学年高二下学期期中考试数学试题【江苏专用】专题08概率与统计(第五部分)-高二下学期名校期末好题汇编(已下线)专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)【基础卷】第7章 概率初步(续)单元测试C-沪教版(2020)选择性必修第二册
2010·湖北·一模
名校
解题方法
2 . 某公司计划在2022年年初将1000万元用于投资,现有两个项目供选择.项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为和.项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,也可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为,,.
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:,)
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:,)
您最近一年使用:0次
2021-09-24更新
|
735次组卷
|
11卷引用:湖北襄樊四中2010年五月高考适应性考试数学试卷(理科)
(已下线)湖北襄樊四中2010年五月高考适应性考试数学试卷(理科)(已下线)福建省厦门双十中学2010届高三数学(理)热身考试卷(已下线)厦门双十中学2010届高三数学(理)热身考试卷2019届广西南宁市第二中学高三最后一模数学(理)试题人教A版(2019) 选修第三册 突围者 第七章 第三节 课时2 离散型随机变量的方差北师大版(2019) 选修第一册 突围者 第六章 第三节 课时2 离散型随机变量的方差(已下线)7.3离散型随机变量的数字特征C卷(已下线)13.3 二项分布、超几何分布与数字特征(已下线)第七章 随机变量及其分布 全章总结 (精讲)(2)第六章 概率单元检测B卷(综合篇)(已下线)第五章 概率统计创新问题 专题一 概率统计决策问题 微点1 概率统计决策问题(一)【基础版】
3 . 产品质量是企业的生命线,为提高产品质量.企业非常重视产品生产线的质量,某企业引进了生产同一种产品的A,B两条生产线,为比较两条生产线的质量,从A,B生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.
(1)有多大的把握认为一级品与生产线有关?
(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.
①分别估计A,B生产线生产一件产品的平均利润;
②你认为哪条生产线的利润较为稳定?并说明理由.
附:①参考公式:,其中.
②临界表值:
(1)有多大的把握认为一级品与生产线有关?
(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.
①分别估计A,B生产线生产一件产品的平均利润;
②你认为哪条生产线的利润较为稳定?并说明理由.
附:①参考公式:,其中.
②临界表值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
您最近一年使用:0次
2021-01-09更新
|
108次组卷
|
2卷引用:陕西省榆林市第十中学2020-2021学年高三上学期第五次模拟考试理科数学试题
4 . 红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害.每只红铃虫的平均产卵数和平均温度有关.现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
表中,
(1)根据散点图判断,与(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率.
(ⅱ)当取最大值时,记该地今后5年中,需要人工防治的次数为,求的数学期望和方差.
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为:,.
平均温度/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 | |||||
平均产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | |||||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 |
(1)根据散点图判断,与(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率.
(ⅱ)当取最大值时,记该地今后5年中,需要人工防治的次数为,求的数学期望和方差.
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为:,.
您最近一年使用:0次
2020-12-06更新
|
1137次组卷
|
15卷引用:2019届湖北省黄冈中学、华师一附中、襄阳四中、襄阳五中、荆州中学等八校高三第二次联考数学(理)试题
2019届湖北省黄冈中学、华师一附中、襄阳四中、襄阳五中、荆州中学等八校高三第二次联考数学(理)试题2020届山东省日照第一中学高三上学期期中数学试题2020届海南省海口市海南中学高三第六次月考试卷数学广东省深圳外国语学校2020届高三下学期第6次月考数学(理)试题广东省汕头市金山中学2019-2020学年高二下学期6月月考数学试题(已下线)痛点16 概率与统计中的综合问题-2021年新高考数学一轮复习考点扫描(已下线)第十一单元 概率与统计(B卷 滚动提升检测)-2021年高考数学(理)一轮复习单元滚动双测卷河北正定中学2021届高三上学期第三次半月考数学试题安徽省六校教育研究会2021届高三下学期2月第二次联考理科数学试题(已下线)8.2 一元线性回归模型及其应用(精练)-2020-2021学年高二数学一隅三反系列(人教A版2019选择性必修第三册)(已下线)黄金卷02-【赢在高考·黄金20卷】备战2021年高考数学全真模拟卷(山东高考专用)(已下线)专题23 概率与统计相结合问题(讲)-2021年高三数学二轮复习讲练测(新高考版)(已下线)专题27 概率与统计相结合问题(讲)-2021年高三数学二轮复习讲练测(文理通用)安徽省六安市舒城中学2021届高三下学期高考仿真(一)理科数学试题(已下线)第八章 成对数据的统计分析(选拔卷)-【单元测试】2021-2022学年高二数学尖子生选拔卷(人教A版2019选择性必修第三册)
解题方法
5 . 为了调查学生星期天晚上学习时间利用问题,某校从高二年级1000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取名学生进行问卷调查,根据问卷取得了这名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组① ,②,③,④,⑤,⑥,⑦,⑧,得到频率分布直方图如下,已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人:
(1)求的值并补全下列频率分布直方图;
(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的名学生,完成下列列联表:
据此资料,你是否认为学生“利用时间是否充分”与走读、住宿有关?
(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为,求的分布列及期望;
参考公式:
(1)求的值并补全下列频率分布直方图;
(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的名学生,完成下列列联表:
利用时间充分 | 利用时间不充分 | 总计 | |
走读生 | |||
住宿生 | 10 | ||
总计 |
(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为,求的分布列及期望;
参考公式:
您最近一年使用:0次
解题方法
6 . 一个口袋中有5个同样大小的球,编号为3,4,5,6,7,从中同时取出3个小球,以表示取出的球的最小号码,求的分布列,均值,方差.
您最近一年使用:0次
7 . 某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:,,,…,(单位:元),得到如图所示的频率分布直方图:
(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为“健身达人”与性别有关?
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为“健身达人”与性别有关?
健身达人 | 非健身达人 | 总计 | |
男 | 10 | ||
女 | 30 | ||
总计 |
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
0.150 | 0.100 | 0.050 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
您最近一年使用:0次
名校
8 . 2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;②若,则,,,
得分 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;②若,则,,,
您最近一年使用:0次
2020-01-11更新
|
1004次组卷
|
4卷引用:湖北省重点高中联考协作体2019-2020学年高三期中数学(理)试题1
湖北省重点高中联考协作体2019-2020学年高三期中数学(理)试题1山东省德州市夏津第一中学2019-2020学年高三上学期12月月考数学试卷2020届湖南省衡阳八中、澧县一中高三上学期11月联考数学(理)试题(已下线)专题05 正态分布与原则(第四篇)-备战2020年高考数学大题精做之解答题题型全覆盖
名校
9 . 10月1日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:
(Ⅰ)若在10月1日当天,从,这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;
(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;
(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)
手机店 | |||||
型号手机销量 | 6 | 6 | 13 | 8 | 11 |
型号手机销量 | 12 | 9 | 13 | 6 | 4 |
(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;
(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)
您最近一年使用:0次
2019-06-12更新
|
1926次组卷
|
7卷引用:【全国百强校】湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题
【全国百强校】湖北省黄冈中学2019届高三第三次模拟考试数学(理)试题2020届山东省青岛二中高三上学期10月月考数学试题河北省邯郸一中2019-2020学年高三下学期第九次模拟数学试题(已下线)专题06 离散型随机变量的期望与方差(第四篇)-备战2020年高考数学大题精做之解答题题型全覆盖海南省华侨中学2019-2020学年高二(6月)第二次阶段性考试数学试题安徽省淮北市第一中学2020届高三下学期第七次月考数学(理)试题人教A版(2019) 选修第三册 一蹴而就 第七章 7.3 离散型随机变量的数字特征
名校
10 . 2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平
均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)央视媒体平台从年龄在和的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则,
(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平
均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)央视媒体平台从年龄在和的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则,
您最近一年使用:0次
2019-03-03更新
|
2535次组卷
|
6卷引用:湖北省宜昌市部分示范高中教学协作体2019-2020高三9月月考数学(理)试题