1 . 设为整数.有穷数列的各项均为正整数,其项数为m().若满足如下两个性质,则称为数列:①,且;②
(1)若为数列,且,求m;
(2)若为数列,求的所有可能值;
(3)若对任意的数列,均有,求d的最小值.
(1)若为数列,且,求m;
(2)若为数列,求的所有可能值;
(3)若对任意的数列,均有,求d的最小值.
您最近一年使用:0次
2023-05-05更新
|
2103次组卷
|
6卷引用:江苏省南京市南京外国语学校2024届高三下学期2月开学期初考试数学试题
江苏省南京市南京外国语学校2024届高三下学期2月开学期初考试数学试题北京市海淀区2023届高三二模数学试题北京卷专题18数列(解答题)(已下线)专题15 数列不等式的证明 微点1 反证法证明数列不等式北京市朝阳区2024届高三上学期数学期中模拟数学试题(已下线)专题05 数列在高中数学其他模块的应用(九大题型+过关检测专训)-2023-2024学年高二数学《重难点题型·高分突破》(人教A版2019选择性必修第二册)
解题方法
2 . 已知数列中,其前项和记为,且满足.
(1)求数列的通项公式;
(2)设无穷数列,,…,…对任意自然数和,不等式均成立,证明:数列是等差数列.
(1)求数列的通项公式;
(2)设无穷数列,,…,…对任意自然数和,不等式均成立,证明:数列是等差数列.
您最近一年使用:0次
2023-03-16更新
|
668次组卷
|
3卷引用:江苏省南京市中华、东外、镇江三校2022-2023学年高三下学期3月联考数学试题
江苏省南京市中华、东外、镇江三校2022-2023学年高三下学期3月联考数学试题广东省韶关市武江区广东北江实验学校2022-2023学年高二下学期第一次(3月)月考数学试题(已下线)第4章 数列 单元综合检测(重点)-2023-2024学年高二数学同步精品课堂(沪教版2020选择性必修第一册)
真题
名校
3 . 设,,且.
证明:(1) ;
(2) 与不可能同时成立.
证明:(1) ;
(2) 与不可能同时成立.
您最近一年使用:0次
2016-12-03更新
|
4950次组卷
|
33卷引用:专题7.3 基本不等式及其应用(讲)-江苏版《2020年高考一轮复习讲练测》
(已下线)专题7.3 基本不等式及其应用(讲)-江苏版《2020年高考一轮复习讲练测》2015年全国普通高等学校招生统一考试理科数学(湖南卷)2016-2017学年江西省上饶市高二上学期期末考试理数试卷陕西省榆林市2018届高考模拟第一次测试理科数学试题陕西省榆林市2018届高考模拟第一次测试文科数学试题【全国百强校】广东省中山市第一中学2017-2018学年高二下学期第三次统测(期末模拟)数学(文)试题(已下线)2019年3月20日 《每日一题》理数选修2-2-反证法(1)【校级联考】河南省开封市、商丘市九校2018-2019学年高二下学期期中联考数学(文)试题安徽省蚌埠市第二中学2016-2017学年高二下学期期中考试数学(文)试题步步高高二数学暑假作业:【文】作业19 推理与证明、算法初步、复数上海市复旦大学附属中学2019-2020学年高一上学期期中数学试题专题11+不等式选讲-2021高考数学(理)高频考点、热点题型归类强化(已下线)【新教材精创】2.2.4均值不等式及其应用练习(2)-人教B版高中数学必修第一册2020届陕西省商洛市丹凤中学高三第一次模拟考试数学(理)试题(已下线)上海市浦东新区华师大二附中2020-2021学年高一上学期期中数学试题(已下线)上海市华东师范大学第二附属中学2020-2021学年高一上学期期中数学试题(已下线)调研测试四(B卷 滚动提升检测)-2021年高考数学(理)一轮复习单元滚动双测卷上海市上海中学2020-2021学年高一上学期12月月考数学试题(已下线)专题14.2 不等式的证明(精练)-2021届高考数学(理)一轮复习讲练测(已下线)专题12.2 直接证明与间接证明、数学归纳法(精讲)-2021年高考数学(理)一轮复习讲练测(已下线)专题12.2 直接证明与间接证明 (精讲)-2021届高考数学(文)一轮复习学与练(已下线)专题14.2 不等式的证明(精练)-2021届高考数学(文)一轮复习学与练(已下线)专题14.2 不等式的证明(精练)-2021年高考数学(理)一轮复习学与练上海市嘉定一中2020-2021学年高一上学期12月月考数学试题安徽省亳州市涡阳县育萃高级中学2020-2021学年高二下学期第一次月考数学(文)试题安徽省黄山市屯溪第一中学2020-2021学年高二下学期期中理科数学试题(已下线)考点43 直接证明与间接证明-备战2022年高考数学(理)一轮复习考点微专题陕西省咸阳市武功县普集高中2021-2022学年高二下学期第一次月考理科数学试题湖北省襄阳市第五中学2022-2023学年高一上学期12月月考数学试题(已下线)【新教材精创】2.2.4 均值不等式及其应用 练习(2)-人教B版高中数学必修第一册(已下线)专题27 不等式选讲(文理通用)专题39不等式选讲(已下线)考点04 基本不等式及其应用--高考数学100个黄金考点(2025届)【练】
4 . 若无穷数列和无穷数列满足:存在正常数A,使得对任意的,均有,则称数列与具有关系.
(1)设无穷数列和均是等差数列,且,,问:数列与是否具有关系?说明理由;
(2)设无穷数列是首项为1,公比为的等比数列,,,证明:数列与具有关系,并求A的最小值;
(3)设无穷数列是首项为1,公差为的等差数列,无穷数列是首项为2,公比为的等比数列,试求数列与具有关系的充要条件.
(1)设无穷数列和均是等差数列,且,,问:数列与是否具有关系?说明理由;
(2)设无穷数列是首项为1,公比为的等比数列,,,证明:数列与具有关系,并求A的最小值;
(3)设无穷数列是首项为1,公差为的等差数列,无穷数列是首项为2,公比为的等比数列,试求数列与具有关系的充要条件.
您最近一年使用:0次
2020-08-04更新
|
769次组卷
|
4卷引用:江苏省南京师范大附中2020届高三下学期6月高考模拟(1)数学试题
江苏省南京师范大附中2020届高三下学期6月高考模拟(1)数学试题上海市青浦区2021届高三上学期一模(期终学业质量调研)数学试题上海市青浦区2021届高三上学期一模数学试题(已下线)上海高二下学期期末真题精选(压轴60题35个考点专练)
解题方法
5 . 已知等比数列的前项和为,,.数列的前项和为,且,.
(1)分别求数列和的通项公式;
(2)若,为数列的前项和,是否存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列?若存在,求出所有满足条件的,,的值;若不存在,说明理由.
(1)分别求数列和的通项公式;
(2)若,为数列的前项和,是否存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列?若存在,求出所有满足条件的,,的值;若不存在,说明理由.
您最近一年使用:0次
2021-01-31更新
|
561次组卷
|
5卷引用:专题09 《数列》中的存在性问题-2021-2022学年高二数学同步培优训练系列(苏教版2019选择性必修第一册)
(已下线)专题09 《数列》中的存在性问题-2021-2022学年高二数学同步培优训练系列(苏教版2019选择性必修第一册)山东省烟台市2020-2021学年高二上学期期末数学试题江西省新余市2021-2022学年高二上学期期末数学(理)试题2023版 湘教版(2019) 选修第一册 过关斩将 第1章 综合拔高练(已下线)广东省2022届高三一模数学试题变式题17-22
21-22高一上·全国·课后作业
名校
6 . 设数集满足条件:①AR;②且;③若,则.
(1)若,则中至少有多少个元素;
(2)证明: 中不可能只有一个元素.
(1)若,则中至少有多少个元素;
(2)证明: 中不可能只有一个元素.
您最近一年使用:0次
名校
7 . 已知数列的前项和满足,数列的前项和满足且.
(1)求数列,的通项公式;
(2)设,求数列的前项和;
(3)数列中是否存在不同的三项,,,使这三项恰好构成等差数列?若存在,求出,,的关系;若不存在,请说明理由.
(1)求数列,的通项公式;
(2)设,求数列的前项和;
(3)数列中是否存在不同的三项,,,使这三项恰好构成等差数列?若存在,求出,,的关系;若不存在,请说明理由.
您最近一年使用:0次
2019-11-04更新
|
769次组卷
|
4卷引用:江苏省扬州市邗江区蒋王中学2018-2019学年高一下学期第二次月考数学试题
江苏省扬州市邗江区蒋王中学2018-2019学年高一下学期第二次月考数学试题湖北省黄石市育英高中2020-2021学年高二上学期第一次月考数学试题(已下线)广东省2022届高三一模数学试题变式题17-22河南省信阳市新县高级中学2024届高三下学期模拟考试一数学试题
12-13高三上·江苏无锡·期中
名校
8 . 已知数列的前项和满足,数列满足.
Ⅰ求数列和数列的通项公式;
Ⅱ令,若对于一切的正整数恒成立,求实数的取值范围;
Ⅲ数列中是否存在,且 使,,成等差数列?若存在,求出的值;若不存在,请说明理由.
Ⅰ求数列和数列的通项公式;
Ⅱ令,若对于一切的正整数恒成立,求实数的取值范围;
Ⅲ数列中是否存在,且 使,,成等差数列?若存在,求出的值;若不存在,请说明理由.
您最近一年使用:0次
2018-12-12更新
|
959次组卷
|
4卷引用:2012届江苏省无锡市高三上学期期中考试数学
(已下线)2012届江苏省无锡市高三上学期期中考试数学【区级联考】北京市通州区2019届高三上学期期中考试数学(理)试题2020届北京市海淀区首都师范大学附属中学高三开学考试数学试题北京市海淀区中关村中学2022届高三上学期开学测试数学试题
10-11高二下·浙江温州·阶段练习
名校
9 . 设,且,,,用反证法证明:至少有一个大于.
您最近一年使用:0次
2019-04-26更新
|
737次组卷
|
12卷引用:江苏省连云港市锦屏高级中学2018-2019学年高二下学期期中数学(理)试题
江苏省连云港市锦屏高级中学2018-2019学年高二下学期期中数学(理)试题(已下线)2010-2011年浙江省文成中学高二下学期第一次月考文科数学(已下线)2011-2012学年浙江省嵊泗中学高二第一次月考数学试卷(7-8班)(已下线)2012年苏教版高中数学选修2-1 1.2简单的逻辑联结词练习卷2015-2016学年安徽省合肥一中高二下期中文科数学试卷高中数学人教A版选修2-2 第二章 推理与证明 2.2.2 反证法(2)【全国百强校】河南省南阳市第一中学2017-2018学年高二下学期第二次月考数学(文)试题(已下线)2019年4月14日 《每日一题》文数选修1-2(期中复习)-每周一测【全国百强校】安徽省黄山市屯溪第一中学2018-2019学年高二下学期期中考试数学(文)试题陕西省商洛市洛南县2018-2019学年高二下学期期中数学(理)试题江西省赣州市石城县石城中学2019-2020学年高二下学期月考数学(文)试题安徽省安庆市怀宁县第二中学2019-2020学年高二下学期期中线上检测数学(文)试题
10 . (1)证明:1,,不可能成等差数列;
(2)证明:1,,不可能为同一等差数列中的三项.
(2)证明:1,,不可能为同一等差数列中的三项.
您最近一年使用:0次