组卷网>知识点选题>利用正态分布三段区间的概率值求概率
显示知识点
显示答案
| 共计 348 道试题
解答题 | 一般(0.65) | 2022·全国·高二课时练习
1 . 某小区的物业公司为了改进工作,提高服务质量和水平,对小区内居民进行满意度调查,制订了详细的调查问卷和评分表,并随机抽出名小区代表的评分作为样本进行分析,评分如下(单位:分).
                           
(1)画出这名代表的评分的茎叶图,并计算均值与方差;
(2)若参加本次调查的代表的评分近似服从正态分布,且每个代表的评分相互独立.该小区计划发放份调查问卷和评分表,每人只能填一份,试估算该小区这份调查问卷中评分不低于分的有多少份.
参考数据:
更新:2022/05/16组卷:26
2 . 单板滑雪U型池比赛是2022年北京冬奥会比赛中的一个项目,进入决赛阶段的运动员按照预赛成绩由低到高的出场顺序轮流进行三次滑行,裁判员根据运动员的腾空高度、完成的动作难度和效果进行评分,最终取单次最高分作为比赛成绩.现有运动员甲、乙两人在2021年A赛季中单板滑雪U型池成绩如下表:

分站

运动员甲的三次滑行成绩

运动员乙的三次滑行成绩

第1次

第2次

第3次

第1次

第2次

第3次

第1站

80.20

85.00

83.03

80.11

88.00

79.02

第2站

82.13

86.31

89.00

79.32

81.22

88.00

第3站

79.10

80.01

87.00

88.50

75.36

87.10

第4站

84.02

91.00

86.71

75.13

88.00

81.01

第5站

80.02

79.36

88.00

85.40

86.04

87.50


假设甲、乙两人每次比赛成绩相互独立.
(1)从上表5站中任意选取2站,用X表示这2站中甲的成绩高于乙的成绩的站数,求X的分布列和数学期望;
(2)请从甲、乙2人中推荐1人参加2022年北京冬奥会单板滑雪U型池比赛,并说明你的理由(言之有理即可);
(3)根据大数据分析得知,如果让运动员甲参加2022年北京冬奥会单板滑雪U型池比赛,他在北京冬奥会单板滑雪U型池比赛的成绩X近似服从正态分布,其中可用他在2021年A赛季中单板滑雪U型池的平均成绩与方差近似代替,求运动员甲参加2022年北京冬奥会单板滑雪U型池比赛的成绩在86分~92分的概率.
附:①若随机变量X服从正态分布,则
②方差,其中,…,的平均数.
3 . 近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布,则下列选项不正确的是(       )
附:若随机变量X服从正态分布,则
A.若红玫瑰日销售量范围在的概率是0.6826,则红玫瑰日销售量的平均数约为250
B.红玫瑰日销售量比白玫瑰日销售量更集中
C.白玫瑰日销售量范围在的概率约为0.8413
D.白玫瑰日销售量范围在的概率约为0.3413
4 . 甲、乙两名高中同学历次数学测试成绩(百分制)分别服从正态分布N(),N(),其正态分布的密度曲线如图所示,则下列说法中正确的是(       
附:若随机变量X服从正态分布N(),则.
A.甲同学的平均成绩优于乙同学的平均成绩甲
B.甲同学的成绩比乙同学成绩更集中于平均值附近
C.若,则甲同学成绩高于80分的概率约为0.1587
D.若,则乙同学成绩低于80分的概率约为0.3174
5 . 某人骑自行车上班,第一条路线较短但拥挤,路途用时(单位:)服从正态分布;第二条路线较长但不拥挤,路途用时(单位:)服从正态分布.若有一天他出发时离上班时间还有,则__________.(精确到)(参考数据:
6 . 在某校的一次科技知识比赛中,全体参赛学生的成绩近似地服从正态分布,则以下正确的是(       )(参考数据:
A.B.
C.D.
7 . 全球新冠肺炎疫情反反复复,国家卫健委专家建议大家出门时佩戴口罩.为了保障人民群众的生命安全和身体健康,某市质监局从药店随机抽取了500包某种品牌的口罩,测量其一项质量指标值,如下:
质量指标值
频数10451101651204010

(1)求这500包口罩质量指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)口罩的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.
①利用该正态分布,求
②某人从该药店为本公司员工购买了100包这种品牌的口罩,记表示这100包口罩中质量指标值位于区间的包数,利用①的结果,求.
附:,若,则.
8 . 在某种产品的生产过程中,需对该产品的关键指标进行检测为保障产品质量,检验员在一天的生产中定期对生产线上生产的产品进行检测每次检测要从该产品的生产线上随机抽取20件进行检测,测量其关键指标数据.根据生产经验,可以认为这条产品生产线正常状态下生产的产品的关键指标数据服从正态分布,在检测中,如果有一次出现了关键指标数据在之外的产品,就认为这条生产线在这一天的生产过程出现了异常情况,需对本次的生产过程进行检查.
(1)下面是检验员在一次抽取的20件产品的关键指标数据:

10.02

9.95

10.05

9.22

9.98

10.04

9.78

9.96

10.04

9.96

10.01

10.13

9.92

10.14

9.91

9.95

10.09

10.05

9.88

10.2


经计算得.其中为抽取的第i件产品的关键指标数据,.用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对本次的生产过程进行检查?
(2)如果一天内共进行四次检测,若有连续两次出现生产过程检查,则需停止生产并对生产设备进行检修.试求一天中需对生产设备进行检修的概率(精确到0.001).
附:若随机变量X服从正态分布,则
9 . 已知某批零件的长度误差X服从正态分布,其密度函数的曲线如图所示,从中随机取一件,其长度误差落在内的概率为______

(附:若随机变量服从正态分布,则
10 . 为了监控某种食品的生产包装过程,检验员每天从生产线上随机抽取包食品,并测量其质量(单位:g).根据长期的生产经验,这条生产线正常状态下每包食品质量服从正态分布.假设生产状态正常,记表示每天抽取的k包食品中其质量在之外的包数,若的数学期望,则k的最小值为__________
附:若随机变量X服从正态分布,则