组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 9 道试题
1 . 《中国制造2025》是中国实施制造强国战略第一个十年的行动纲领,制造业是国民经济的主体,是立国之本、兴国之器、强国之基发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某电子产品制造企业为了提升生产效率,对现有的一条电子产品生产线进行技术升级改造,为了分析改造的效果,该企业质检人员从该条生产线所生产的电子产品中随机抽取了1000件,检测产品的某项质量指标值,根据检测数据得到下表(单位:件).

质量指标

产品

60

100

160

300

200

100

80

(1)估计这组样本的质量指标值的平均数和方差(同一组中的数据用该组区间中点值作代表);
(2)设表示不大于的最大整数,表示不小于的最小整数,精确到个位,,根据检验标准,技术升级改造后,若质量指标值有65%落在内,则可以判断技术改造后的产品质量初级稳定;若有95%落在内,则可以判断技术改造后的产品质量稳定,可认为生产线技术改造成功.请问:根据样本数据估计,是否可以判定生产线的技术改造是成功的?
(3)为了检测技术人员的业务知识,该企业对两名业务人员进行知识考核竞赛,规则如下:在初赛中有两轮答题:第一轮从类的5个问题中任选两题作答,若两题都答对,则得20分,否则得0分;第二轮从类的4个问题中任选两题依次作答,每答对一题得20分,答错得0分.若两轮总得分不低于40分,则晋级复赛.甲和乙同时参赛,已知在类的5个问题中,甲只能答对4个问题,在类的4个问题中,甲答对的概率都为0.4;乙答对每个问题的概率都为0.6.甲、乙回答任一问题正确与否互不影响.
(ⅰ)求甲在第一轮比赛中得0分的概率;
(ⅱ)以晋级复赛的概率大小为依据,甲和乙谁更容易晋级复赛?
2024-11-01更新 | 155次组卷 | 1卷引用:四川省成都市树德中学2024-2025学年高二上学期中适应性考试数学试题
2 . 根据以往的统计资料,甲、乙两运动员在比赛中的得分情况统计如下:

X

0

1

2

P

0.1

0.8

0.1

X

0

1

2

P

0.4

0.2

0.4

现有一场比赛,派哪位运动员参加比较好?请写出你的决定,并说明理由.
2024-05-04更新 | 236次组卷 | 3卷引用:北京市第三十五中学2023-2024学年高二下学期期中考试数学试题
3 . (1)已知甲乙两名同学的某次体育项目测试成绩分别为:甲:10,13,12,14,16.乙:13,14,12,12,14.求甲乙两人成绩的平均数与方差,比较谁的成绩更稳定.
(2)某学校为了调查学生的学习情况,现用分层抽样的方法抽取样本,若样本中有20名男生,30名女生,且男生的平均成绩为70分,方差为4,女生的平均成绩为80分,方差为6,求所抽取样本的方差.
2023-11-07更新 | 367次组卷 | 5卷引用:陕西省榆林市子洲中学2023-2024学年高三上学期期中文科数学试题
4 . 某稻谷试验田试种了两个品种的水稻各10亩,并在稻谷成熟后统计了这20亩地的稻谷产量如下表,记两个品种各10亩产量的平均数分别为,方差分别为

(单位:

60

63

50

76

71

85

75

63

63

64

(单位:

56

62

60

68

78

75

76

62

63

70

(1)分别求这两个品种产量的极差和中位数;
(2)求
(3)依据以上计算结果进行分析,推广种植品种还是品种水稻更合适.
2023-11-03更新 | 549次组卷 | 4卷引用:四川省成都市彭州市2023-2024学年高二上学期期中考试数学试题
智能选题,一键自动生成优质试卷~
5 . 某中学的高二(1)班有男同学45名、女同学15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选1名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(3)实验结束后,第一次做实验的同学得到实验数据为68、70、71、72、74,第二次做实验的同学得到的实验数据为69、70、70、72、74,请问哪位同学的实验更稳定?并说明理由.
2023-02-06更新 | 701次组卷 | 21卷引用:2011-2012学年江西省横峰中学高二下学期期中考试文科数学试卷
6 . 为研究某地区2021届大学毕业生毕业三个月后的毕业去向,某调查公司从该地区2021届大学毕业生中随机选取了1000人作为样本进行调查,结果如下:
毕业去向继续学习深造单位就业自主创业自由职业慢就业
人数2005601412898
假设该地区2021届大学毕业生选择的毕业去向相互独立.
(1)若该地区一所高校2021届大学毕业生的人数为2500,试根据样本估计该校2021届大学毕业生选择“单位就业”的人数;
(2)从该地区2021届大学毕业生中随机选取3人,记随机变量为这3人中选择“继续学习深造”的人数.以样本的频率估计概率,求的分布列和数学期望
(3)该公司在半年后对样本中的毕业生进行再调查,发现仅有选择“慢就业”的毕业生中的人选择了上表中其他的毕业去向,记此时表中五种毕业去向对应人数的方差为.当为何值时,最小.(结论不要求证明)
7 . 为了参加数学选拔赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下:
理科:79,80,81,79,94,92,85,90
文科:94,80,90,81,73,84,90,80
(1)计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥更好;
(2)若在成绩不低于90分的同学中随机抽出2人进行培训,求抽出的2人中至少有1名理科组同学的概率.
8 . 小明同学两次测试成绩(满分100分)如下表所示:
语文数学英语物理化学生物
第一次879291928593
第二次829495889487
(1)从小明同学第一次测试的科目中随机抽取1科,求该科成绩大于90分的概率;
(2)从小明同学第一次测试和第二次测试的科目中各随机抽取1科,记X为抽取的2科中成绩大于90分的科目数量,求X的分布列和数学期望
(3)现有另一名同学两次测试成绩(满分100分)及相关统计信息如下表所示:
语文数学英语物理化学生物6科成绩均值6科成绩方差
第一次
第二次
将每科两次测试成绩的均值作为该科的总评成绩,这6科总评成绩的方差为.有一种观点认为:若,则.你认为这种观点是否正确?(只写“正确”或“不正确”)
9 . 随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争,吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务,在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.

(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;
(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X为选中月平均收入薪资高于8500元的城市的人数,求X的分布列和数学期望EX);
(3)记图中月平均收入薪资对应数据的方差为,月平均期望薪资对应数据的方差为,判断的大小(只需写出结论)
共计 平均难度:一般