组卷网 > 知识点选题 > 根据步骤列出离散型随机变量的分布列
解析
| 共计 6779 道试题
1 . 一个质点从数轴上的原点0开始移动,通过抛掷一枚质地均匀的硬币决定质点向左或者向右移动.若硬币正面向上,则质点向右移动一个单位;若硬币反面向上,则质点向左移动一个单位.抛掷硬币4次后,质点所在位置对应数轴上的数记为随机变量,求:
(1)质点位于2的位置的概率;
(2)随机变量的分布列和期望.
2 . 袋子中有大小形状完全相同的2个白球和4个黑球,从中任取3个球,1个白球得2分,1个黑球得1分.记X为取出的3个球的得分总和,则________.
3 . 某校为了了解学生体能情况,从全校男女生体能测试成绩中随机抽取容量为20的样本数据进行统计分析,样本数据整理如下(满分100分):
女生 75 70 75 70 75 95 85 75 90 75
男生 75 70 80 85 90 80 85 80 90 80
若规定成绩不低于80为A等,成绩低于80为B等.
性别成绩合计
AB
女生

10
男生

10
合计

20

(1)完成上表,依据的独立性检验,能否认为体能测试成绩与性别有关联?
(2)从这20名体能测试成绩为等的学生中随机挑选3名,求挑选出男生成绩为等的人数的分布列与数学期望.
附:,其中
0.050.005
3.8417.897
昨日更新 | 35次组卷 | 1卷引用:四川省宜宾市2023-2024学年高二下学期期末学业质量监测数学试题
4 . 2023年五一劳动节前夕,某公司为全体员工发放奖励,奖励拟采用抽签方式发放:每位员工分别从标有不同面值的4张卡片中随机取出2张,2张卡片上的面值之和即为该员工的奖励金额.
(1)若4张卡片上的面值分别为100元,100元,300元,500元.
①求每位员工所获得的奖励金额不低于500元的概率;
②记每位员工所获得的奖励金额为X元,求X的分布列与期望;
(2)你能否设计一种抽签方案,使得4张卡片上的面值分别为100元,200元,300元,400元,500元中的3个,且每位员工所获得的奖励金额的期望值不变,且奖励金额相对均衡(只需给出一种方案并说明理由即可,不需要判断是否还有其他方案).
昨日更新 | 6次组卷 | 1卷引用:福建省漳州市长泰第一中学2022-2023学年高二下学期期中联考数学试题
5 . 李平放学回家途经3个有红绿灯的路口,交通法规定:若在路口遇到红灯,需停车等待;若在路口没遇到红灯,则直接通过.经长期观察发现:他在第一个路口遇到红灯的概率为,在第二、第三个路口遇到红灯的概率依次增加,在三个路口都没遇到红灯的概率为,在三个路口都遇到红灯的概率为,且他在各路口是否遇到红灯相互独立.
(1)求李平放学回家途中在第三个路口首次遇到红灯的概率;
(2)记为李平放学回家途中遇到红灯的路口个数,求的概率分布列及数学期望
昨日更新 | 20次组卷 | 1卷引用:江苏省扬州市宝应县氾水高级中学2023-2024学年高二下学期5月月考数学试题
6 . 某工厂生产某款电池,在满电状态下能够持续放电时间不低于10小时的为合格品,工程师选择某台生产电池的机器进行参数调试,在调试前后,分别在其产品中随机抽取样本数据进行统计,制作了如下的列联表:
产品合格不合格合计
调试前451560
调试后35540
合计8020100
(1)根据表中数据,依据的独立性检验,能否认为参数调试与产品质量有关联;
(2)现从调试前的样本中按合格和不合格,用分层随机抽样法抽取8件产品重新做参数调试,再从这8件产品中随机抽取3件做对比分析,记抽取的3件中合格的件数为,求的分布列和数学期望;
(3)用样本分布的频率估计总体分布的概率,若现在随机抽取调试后的产品1000件,记其中合格的件数为,求使事件“”的概率最大时的取值.
参考公式及数据:,其中.
0.0250.010.0050.001
5.0246.6357.87910.828
昨日更新 | 21次组卷 | 1卷引用:安徽省六安市第二中学2023-2024学年高二下学期期末学情检测数学试卷
7 . 在一个不透明的密闭纸箱中装有 10个大小、形状完全相同的小球,其中8个白球,2个黑球.小张每次从纸箱中随机摸出一个小球观察其颜色,连续摸4次,记随机变量为小张摸出白球的个数.
(1)若小张每次从纸箱中随机摸出一个小球后放回纸箱,求
(2)若小张每次从纸箱中随机摸出一个小球后不放回纸箱,求的分布列和
昨日更新 | 111次组卷 | 1卷引用:山东省淄博市2023-2024学年高二下学期期末考试数学试题
8 . 由这四个数组成无重复数字的四位数中.
(1)求两个奇数相邻的四位数的个数(结果用数字作答);
(2)记夹在两个奇数之间的偶数个数为,求的分布列与期望.
昨日更新 | 12次组卷 | 1卷引用:山东省菏泽市2023-2024学年高二下学期7月期末教学质量检测数学试题
9 . 甲、乙两个袋子各装有大小相同的3个红球和2个白球,第一次从甲袋子随机取出一个球放入乙袋子.求:
(1)第二次从乙袋子随机取出一个球是红球的概率;
(2)在第二次从乙袋子随机取出一个球是红球的条件下,第一次从甲袋子取出的是白球的概率;
(3)第二次从乙袋子随机取出两个球,其中白球个数的分布列与期望.
10 . 某加盟连锁店总部对旗下600个加盟店中每个店的日销售额(单位:百元)进行了调查,如图是随机抽取的50个加盟店的日销售额的频率分布直方图.若将日销售额在的加盟店评定为“四星级”加盟店,日销售额在的加盟店评定为“五星级”加盟店.

(1)根据上述调查结果,估计这50个加盟店日销售额的平均数(同一组中的数据用该组区间的中点值为代表,结果精确到0.1);
(2)若该加盟连锁店总部旗下所有加盟店的日销售额,其中近似为(1)中的样本平均数,根据的分布估计这600个加盟店中“五星级”加盟占的个数(结果精确到整数);
(3)该加盟连锁店总部决定对样本中“四星级”及“五星级”加盟店进一步调研,现从这些加盟店中随机抽取3个,设为抽取的“五星级”加盟店的个数,求的概率分布列与数学期望.
(参考数据:若,则
7日内更新 | 40次组卷 | 1卷引用:吉林省白山市2023-2024学年高二下学期7月期末数学试题
共计 平均难度:一般