解答题 | 一般(0.65) |
解题方法
1 . 一个袋子中有8个大小相同颜色不同的小球,其中4个红球,3个白球,1个黄球,从袋中任意取出3个小球.
(1)求其中恰有2个小球颜色相同的概率;
(2)设随机变量X为取出的3个小球中红球的个数,求X的均值和方差.
(1)求其中恰有2个小球颜色相同的概率;
(2)设随机变量X为取出的3个小球中红球的个数,求X的均值和方差.
您最近半年使用:0次
解题方法
2 . 冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,让学生了解更多的冬奥会知识,某学校举办了有关2022年北京冬奥会知识的宣传活动,其中有一项为抽卡答题活动,盒中装有9张大小相同的精美卡片,卡片上分别印有北京冬奥会的吉祥物“冰墩墩”和“雪容融”.卡片背面都有关于冬奥会的问题,答对则奖励与卡片对应的吉祥物玩偶.其中“冰墩墩”卡片有5张,编号分别为1,2,3,4,5;“雪容融”卡片有4张,编号分别为1,2,3,4,从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).

(1)求取出的4张卡片中,含有编号为4的卡片的概率;
(2)在取出的4张卡片中,“冰墩墩”卡片的个数设为X.求随机变量X的分布列.

(1)求取出的4张卡片中,含有编号为4的卡片的概率;
(2)在取出的4张卡片中,“冰墩墩”卡片的个数设为X.求随机变量X的分布列.
您最近半年使用:0次
解题方法
3 . “民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为
,且相互间没有影响.
(1)求选手甲被淘汰的概率;
(2)设选手甲在初赛中答题的个数为X,试求X的分布列和数学期望.

(1)求选手甲被淘汰的概率;
(2)设选手甲在初赛中答题的个数为X,试求X的分布列和数学期望.
您最近半年使用:0次
4 . 习近平总书记曾提出,“没有全民健康,就没有全面小康”.为响应总书记的号召,某社区开展了“健康身体,从我做起”社区健身活动,运动分为徒手运动和器械运动两大类.该社区对参与活动的1200人进行了调查,其中男性650人,女性550人;所得统计数据如下表所示:(单位:人)
(1)请将题中表格补充完整,并判断能否有
把握认为“是否选择器械类与性别有关”?
(2)为了检验活动效果,该社区组织了一次徒手类的竞赛项目,对社区中参与徒手类项目的人群采取分层抽样的方法抽取5人参与竞赛,其中男生通过徒手类竞赛的概率为
,女生通过的概率为
,且男女生是否通过相互独立,用
表示通过徒手类竞赛项目的人数,求随机变量
的分布列和数学期望.
(参考数据:
,
,
)
附:
的计算公式:
,其中
.
分类 性别 | 器械类 | 徒手类 | 合计 |
男性 | 590 | ||
女性 | 240 | ||
合计 | 900 |
(1)请将题中表格补充完整,并判断能否有

(2)为了检验活动效果,该社区组织了一次徒手类的竞赛项目,对社区中参与徒手类项目的人群采取分层抽样的方法抽取5人参与竞赛,其中男生通过徒手类竞赛的概率为




(参考数据:



附:



![]() | 0.050 | 0.025 | 0.010 | 0.005 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 |
您最近半年使用:0次
解题方法
5 . 已知袋中装有大小相同的2个白球和4个红球,现在采取两种不同的方案取出球,具体如下:
(1)从袋中随机地取出一个球,放回后再随机地取出一个球,这样连续取4次球,求共取得红球次数
的分布列;
(2)从袋中随机地将球逐个取出,每次取后不放回,直到取出两个红球为止,求取球次数
的数学期望和方差.
(1)从袋中随机地取出一个球,放回后再随机地取出一个球,这样连续取4次球,求共取得红球次数

(2)从袋中随机地将球逐个取出,每次取后不放回,直到取出两个红球为止,求取球次数

您最近半年使用:0次
6 . 国防科技大学是我国军事学院的最高学府,被称为“军中清华”学校拟计划对今年招收的部分新生做一个测试,抽取40名新生对关于报考志愿的首要考虑因素进行调查,所得统计结果如下表所示:
(1)完成2×2列联表,并判断是否有95%的把握认为新生报考志愿的首要考虑因素与性别有关;
(2)若测试调查共设置2个环节,新生需要参加全部环节的测试,每个环节设置两个项目,若新生每通过一个项目积2分,未通过积
分.已知新生甲第1环节每个项目通过的概率均为
第2环节每个项目通过的概率为
,各环节、各项目间相互独立.求甲经过两个环节的测试后所得积分之和的分布列和数学期望
.
参考公式:
,其中
.
参考数据:
男生 | 女生 | 总计 | |
以祖国的国防事业为首要考虑因素 | 10 | 26 | |
以实现自己的军人梦为首要考虑因素 | 4 | ||
总计 | 20 | 40 |
(1)完成2×2列联表,并判断是否有95%的把握认为新生报考志愿的首要考虑因素与性别有关;
(2)若测试调查共设置2个环节,新生需要参加全部环节的测试,每个环节设置两个项目,若新生每通过一个项目积2分,未通过积




参考公式:


参考数据:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
您最近半年使用:0次
7 . 为了解学校学生的睡眠情况,决定抽取20名学生对其睡眠时间进行调查,统计如下:
(1)记“足8小时”为睡眠充足,“不足8小时”为睡眠不充足,完成下面的列联表,并判断是否有90%的把握认为“睡眠充足与否”与性别有关;
(2)现从抽出的11位女生中再随机抽取3人,记X为睡眠时间“不足8小时足7小时”的女生人数,求X的分布列和均值.
附:
;
性别/睡眠时间 | 足8小时 | 不足8小时足7小时 | 不足7小时 |
男生 | 3 | 5 | 1 |
女生 | 1 | 7 | 3 |
(1)记“足8小时”为睡眠充足,“不足8小时”为睡眠不充足,完成下面的列联表,并判断是否有90%的把握认为“睡眠充足与否”与性别有关;
睡眠情况 | 性别 | 合计 | |
男生 | 女生 | ||
睡眠充足 | |||
睡眠不充足 | |||
合计 |
(2)现从抽出的11位女生中再随机抽取3人,记X为睡眠时间“不足8小时足7小时”的女生人数,求X的分布列和均值.
附:

0.1 | 0.05 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
您最近半年使用:0次
解题方法
8 . 近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:
表1:
根据以上数据,绘制了如图1所示的散点图.

参考数据:
其中
参考公式:
对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
(1)根据散点图判断,在推广期内,
与
(
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表1中的数据,求
关于
的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2所示:
表2:
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠.根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为
,享受8折优惠的概率为
,享受9折优惠的概率为
,根据所得数据,以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.


表1:
![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
![]() | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根据以上数据,绘制了如图1所示的散点图.

参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中

参考公式:
对于一组数据



(1)根据散点图判断,在推广期内,





(2)根据(1)的判断结果及表1中的数据,求


(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2所示:
表2:
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 | ![]() | ![]() | ![]() |
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠.根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为



您最近半年使用:0次
解题方法
9 . 2022世界乒乓球团体锦标赛将于2022年9月30日至10月9日在成都举行.近年来,乒乓球运动已成为国内民众喜爱的运动之一.今有甲、乙两选手争夺乒乓球比赛冠军,比赛采用三局两胜制,即某选手率先获得两局胜利时比赛结束.根据以往经验, 甲、乙在一局比赛获胜的概率分别为
、
,且每局比赛相互独立.
(1)求甲获得乒兵球比赛冠军的概率;
(2)比赛开始前,工作人员买来两盒新球,分别为“装有2个白球与1个黄球”的白盒与“装有1个白球与2个黄球”的黄盒.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,直接丢弃.裁判按照如下规则取球:每局取球的盒子颜色与上一局比赛用球的颜色一致,且第一局从白盒中取球.记甲、乙决出冠军后,两盒内白球剩余的总数为
,求随机变量
的分布列与数学期望.


(1)求甲获得乒兵球比赛冠军的概率;
(2)比赛开始前,工作人员买来两盒新球,分别为“装有2个白球与1个黄球”的白盒与“装有1个白球与2个黄球”的黄盒.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,直接丢弃.裁判按照如下规则取球:每局取球的盒子颜色与上一局比赛用球的颜色一致,且第一局从白盒中取球.记甲、乙决出冠军后,两盒内白球剩余的总数为


您最近半年使用:0次
解题方法
10 . “数字华容道”是一款流行的益智游戏.n×n的正方形盘中有
个小滑块,对应数字1至
.初始状态下,所有滑块打乱位置,并保证第n行第n列为空格.游戏规则如下:玩家经过移动小方块,将“1”归位,即将“1”由初始状态移动至“目标位置”(第一行第一列),如图情况下最少3步即可(“初始”至“移动3”).假设所有玩家始终用最少的移动步数进行移动.

(1)如图,图1,图2分别为二阶、三阶华容道,数字表示“以该处为‘1’的初始位置,将其移动到‘目标位置’(第一行第一列)所需的最少移动次数”,请在图2三阶华容道的空格里填上相应数字;
(2)对于3阶华容道,从8个可能位置中的某个出发,若最终需要的最少移动次数不超过7,则获得1积分,求甲同学三轮之后不低于2分的概率;
(3)对于3阶华容道,若A、B两人各持一个华容道游戏盘,双方各自独立地从中间列初始位置中随机选取一个开始游戏,设两人的步数之和为随机变量X,求X的分布列和数学期望
.



(1)如图,图1,图2分别为二阶、三阶华容道,数字表示“以该处为‘1’的初始位置,将其移动到‘目标位置’(第一行第一列)所需的最少移动次数”,请在图2三阶华容道的空格里填上相应数字;
(2)对于3阶华容道,从8个可能位置中的某个出发,若最终需要的最少移动次数不超过7,则获得1积分,求甲同学三轮之后不低于2分的概率;
(3)对于3阶华容道,若A、B两人各持一个华容道游戏盘,双方各自独立地从中间列初始位置中随机选取一个开始游戏,设两人的步数之和为随机变量X,求X的分布列和数学期望

您最近半年使用:0次