组卷网 > 知识点选题 > 数系的扩充与复数的概念
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 5 道试题
1 . 已知函数,其中,证明:存在,且.的根的实部全部大于0.
2023-03-15更新 | 261次组卷 | 2卷引用:上海市复旦大学2022年“数学英才实验班”选拔考试笔试试题
2 . 利用平面向量的坐标表示,可以把平面向量的概念推广为坐标为复数的“复向量”,即可将有序复数对视为一个向量,记作.类比平面向量可以定义其运算,两个复向量的数量积定义为一个复数,记作,满足,复向量的模定义为
(1)设,求复向量的模;
(2)设是两个复向量,证明柯西一布涅科夫斯基不等式仍成立,即:
(3)当时,称复向量平行.设,若复向量平行,求复数的值.
2021-07-12更新 | 1279次组卷 | 9卷引用:专题05 复数压轴题型汇总-2021-2022学年高一《新题速递·数学》(人教A版2019)
3 . 求证:
(1)
(2)
(3)
(4).
2020-01-30更新 | 1273次组卷 | 6卷引用:专题05 复数压轴题型汇总-2021-2022学年高一《新题速递·数学》(人教A版2019)
4 . 设复平面上点对应的复数为虚数单位)满足,点的轨迹方程为曲线. 双曲线:与曲线有共同焦点,倾斜角为的直线与双曲线的两条渐近线的交点是为坐标原点.
(1)求点的轨迹方程
(2)求直线的方程;
(3)设PQR三个顶点在曲线上,求证:当PQR重心时,PQR的面积是定值.
2018-04-16更新 | 1085次组卷 | 4卷引用:考向30 复数-备战2022年高考数学一轮复习考点微专题(上海专用)
智能选题,一键自动生成优质试卷~
5 . 已知是虚数, 是实数.
(1)求为何值时, 有最小值,并求出|的最小值;
(2)设,求证: 为纯虚数.
2017-05-21更新 | 2187次组卷 | 4卷引用:专题16 复数——常见中档题型汇编-【重难点突破】2021-2022学年高一数学常考题专练(人教A版2019必修第二册)
共计 平均难度:一般