组卷网 > 知识点选题 > 双曲线中的定值问题
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 880 道试题
1 . 已知点P为双曲线上任意一点,过点的切线交双曲线的渐近线于两点.
(1)证明:恰为的中点;
(2)过点分别作渐近线的平行线,与OAOB分别交于MN两点,判断PMON的面积是否为定值,如果是,求出该定值;如果不是,请说明理由;
昨日更新 | 20次组卷 | 1卷引用:辽宁省部分学校2024届高三第二次联考(二模)数学试题
2 . 在平面直角坐标系中,点在双曲线上,渐近线方程为.
(1)求双曲线的方程;
(2)过点作直线与双曲线交于两点,在轴上是否存在一定点,使得直线的斜率之和为定值?若存在,请求出点的坐标及定值;若不存在,请说明理由.
昨日更新 | 49次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试·押题卷数学(二)
3 . 已知双曲线的左、右焦点分别为,点上一点.若的内心,且.
(1)求的方程;
(2)点A在第一象限的渐近线上的一点,且轴,点右支上的一动点,在点处的切线与直线相交于点,与直线相交于点.证明:为定值.
昨日更新 | 23次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试·押题卷数学(六)
4 . 如图,已知双曲线,点BC的左顶点,点FC的右焦点,点AC上的一个动点(在第一象限内),C的右准线,直线的交点为P.过点A作直线的平行线l的交点为Qx轴的交点为S.

(1)证明:当点AC上运动时,的大小为定值.
(2)探讨的大小关系.
7日内更新 | 83次组卷 | 1卷引用:河南省信阳市新县高级中学2024届高三适应性考试(十一)数学试题
智能选题,一键自动生成优质试卷~
5 . 我们所学过的椭圆、双曲线、抛物线这些圆锥曲线,都有令人惊奇的光学性质,且这些光学性质都与它们的焦点有关.如从双曲线的一个焦点处出发的光线照射到双曲线上,经反射后光线的反向延长线会经过双曲线的另一个焦点(如图所示,其中是反射镜面也是过点处的切线).已知双曲线)的左右焦点分别为,从处出发的光线照射到双曲线右支上的点P处(点P在第一象限),经双曲线反射后过点

   

(1)请根据双曲线的光学性质,解决下列问题:
,且直线的倾斜角为时,求反射光线所在的直线方程;
(2)从处出发的光线照射到双曲线右支上的点处,且三点共线,经双曲线反射后过点,延长分别交两条渐近线于,点的中点,求证:为定值.
(3)在(2)的条件下,延长y轴于点,当四边形的面积为8时,求的方程.
7日内更新 | 523次组卷 | 2卷引用:辽宁省丹东市2024届高三下学期总复习质量测试(一)数学试卷
6 . 已知分别为双曲线C的左、右焦点,过的直线l与双曲线C的右支交于AB两点.当lx轴垂直时,面积为12.
(1)求双曲线C的标准方程;
(2)当lx轴不垂直时,作线段AB的中垂线,交x轴于点D.试判断是否为定值.若是,请求出该定值;若不是,请说明理由.
7日内更新 | 260次组卷 | 1卷引用:吉林省长春市2024届高三下学期三模数学试题
7 . 双曲线的一条渐近线方程为,焦点到其渐近线的距离为1.
(1)求双曲线的方程;
(2)过双曲线右焦点作直线分别交于左右两支上的点,又过原点作直线,使,且与双曲线分别交于左右两支上的点.问是否存在定值,使得?若存在,请求的值;若不存在,请说明理由.
7日内更新 | 90次组卷 | 1卷引用:安徽省芜湖中华艺术学校2023-2024学年高三下学期3月质量检测数学试题
8 . 已知双曲线,上顶点为,直线与双曲线的两支分别交于两点(在第一象限),与轴交于点.设直线的倾斜角分别为.
(1)若
(i)若,求
(ii)求证:为定值;
(2)若,直线轴交于点,求的外接圆半径之比的最大值.
7日内更新 | 353次组卷 | 1卷引用:浙江省宁波市2023-2024学年高三下学期高考模拟考试数学试题
9 . 在平面直角坐标系中,分别为双曲线的左右焦点,过的直线与双曲线的右支交于两点.当轴垂直时,面积为12.
(1)求双曲线的标准方程;
(2)当轴不垂直时,作线段的中垂线,交轴于点.试判断是否为定值.若是,请求出该定值;若不是,请说明理由.
7日内更新 | 281次组卷 | 1卷引用:东北三省四市教研联合体2024届高考模拟(一)数学试卷
10 . 双曲线上一点到左、右焦点的距离之差为6,
(1)求双曲线的方程,
(2)已知,过点的直线交于(异于)两点,直线交于点,试问点到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由,
共计 平均难度:一般