组卷网 > 章节选题 > 5.5 三角恒等变换
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 13 道试题
1 . 固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.
(1)类比正弦函数的二倍角公式,请写出双曲正弦函数的一个正确的结论:_____________.(只写出即可,不要求证明);
(2),不等式恒成立,求实数的取值范围;
(3)若,试比较的大小关系,并证明你的结论.
2024-01-27更新 | 1513次组卷 | 14卷引用:重庆市缙云教育联盟2024届高三下学期2月月度质量检测数学试题
2 . 设函数定义在区间上,若对任意的,当,且时,不等式成立,就称函数具有M性质.
(1)判断函数是否具有M性质,并说明理由;
(2)已知函数在区间上恒正,且函数具有M性质,求证:对任意的,且,有
(3)①已知函数具有M性质,证明:对任意的,有,其中等号当且仅当时成立;
②已知函数具有M性质,若为三角形的内角,求的最大值.
(可参考:对于任意给定实数,有,且等号当且仅当时成立.)
2021-12-27更新 | 777次组卷 | 5卷引用:上海市黄浦区2022届高三一模数学试题
3 . 在平面直角坐标系中,利用公式①(其中为常数),将点变换为点的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由组成的正方形数表唯一确定,我们将称为二阶矩阵,矩阵通常用大写英文字母,…表示.

(1)在平面直角坐标系中,将点绕原点按逆时针旋转得到点(到原点距离不变),求点的坐标;
(2)如图,在平面直角坐标系中,将点绕原点按逆时针旋转角得到点(到原点距离不变),求坐标变换公式及对应的二阶矩阵;
(3)向量(称为行向量形式),也可以写成,这种形式的向量称为列向量,线性变换坐标公式①可以表示为:,则称是二阶矩阵与向量的乘积,设是一个二阶矩阵,是平面上的任意两个向量,求证:
2024-04-12更新 | 2749次组卷 | 12卷引用:安徽省皖江名校联盟2024届高三下学期4月模拟数学试题
4 . 由倍角公式,可知可以表示为的二次多项式.对于,我们有




可见也可以表示成的三次多项式.
(1)利用上述结论,求的值;
(2)化简;并利用此结果求的值;
(3)已知方程上有三个根,记为,求证:.
2024-04-11更新 | 1489次组卷 | 8卷引用:4.2 诱导公式与恒等变化
智能选题,一键自动生成优质试卷~
5 . 若函数的定义域为,且存在非零常数,使得对任意,都有,则称是类周期为的“类周期函数”.
(1)若函数是类周期为1的“类周期函数”,证明:是周期函数;
(2)已知是“类周期函数”,求的值及的类周期;
(3)若奇函数是类周期为的“类周期函数”,且,求的值,并给出符合条件的一个.
2024-08-30更新 | 344次组卷 | 1卷引用:湖南省名校联考联合体2025届高三上学期第一次联考(暨入学检测)数学试题
6 . 定义:为实数的“正弦方差”.
(1)若,则实数的“正弦方差”的值是否是与无关的定值,并证明你的结论
(2)若,若实数的“正弦方差”的值是与无关的定值,求值.
2024-04-07更新 | 432次组卷 | 5卷引用:拔高点突破01 三角函数与解三角形背景下的新定义问题(十大题型)
7 . 已知函数的定义域为,若存在常数,使得对任意的成立,则称函数函数.
(1)判断函数是否是函数,不必说明理由;
(2)若函数函数,且是偶函数,求证:函数是周期函数;
(3)若函数函数.求实数的取值范围;
(4)定义域为的函数同时满足以下三条性质:
①存在,使得
②对于任意,有
不是单调函数,但是它图像连续不断,
写出满足上述三个性质的一个函数,则              .(不必说明理由)
2023-05-11更新 | 333次组卷 | 3卷引用:专题06 信息迁移型【练】【北京版】
8 . 在数学中,双曲函数是与三角函数类似的函数,最基本的双曲函数是双曲正弦函数与双曲余弦函数,其中双曲正弦函数:,双曲余弦函数:.(e是自然对数的底数,).双曲函数的定义域是实数集,其自变量的值叫做双曲角,双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程.
(1)计算的值;
(2)类比两角和的余弦公式,写出两角和的双曲余弦公式:______,并加以证明;
(3)若对任意,关于的方程有解,求实数的取值范围.
2024-03-29更新 | 375次组卷 | 2卷引用:拔高点突破01 三角函数与解三角形背景下的新定义问题(十大题型)
9 . 由两角和差公式我们得到倍角公式,实际上也可以表示为的三次多项式.
(1)试用表示
(2)求的值
(3)已知方程上有三个根,记为,求证:
2022-09-25更新 | 1888次组卷 | 4卷引用:福建省福州第十五中学2023届高三10月月考数学试题
10 . 已知函数,(
(1)若,证明:函数在区间上有且仅有个零点;
(2)若对于任意的恒成立,求的最大值和最小值.
2023-06-29更新 | 1597次组卷 | 8卷引用:江苏省扬州中学2023-2024学年高三上学期10月月考数学试题
共计 平均难度:一般