组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 12 道试题
1 . 某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后2年内的延保维修优惠方案.方案一:交纳延保金7000元,在延保的2年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保差10000元,在延保的2年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器,现需决策在购买机器时应选择哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保2年内维修的次数,得下表:
维修次数0123
台数5102015
将频率视为概率,记X表示这2台机器超过质保期后延保的2年内共需维修的次数.
(1)求X的分布列;
(2)以方案一与方案二所需费用(所需延保金友维修费用之和)的期望值为决策依据,医院选择哪种延保方案更合算?
2022-04-15更新 | 355次组卷 | 21卷引用:【全国百强校】福建省厦门双十中学2020届高三上学期开学考试数学(理)试题
21-22高二上·福建厦门·开学考试
2 . 已知一袋中有标有号码1、2、3、4的卡片各一张,每次从中取出一张,记下号码后放回,当四种号码的卡片全部取出时即停止,则恰好取6次卡片时停止的概率为(       
A.B.C.D.
2021-09-27更新 | 344次组卷 | 1卷引用:福建省厦门市湖滨中学2021-2022学年高二上学期开学收心练习数学试题
21-22高二上·福建厦门·开学考试
解答题-问答题 | 较易(0.85) |
3 . 4个射手独立地进行射击,设每人中靶的概率都是0.9,试求下列各事件的概率:
(1)4人都中靶;
(2)4人都没中靶;
(3)两人中靶,另两人没中靶.
2021-09-25更新 | 85次组卷 | 1卷引用:福建省厦门市湖滨中学2021-2022学年高二上学期开学收心练习数学试题
19-20高一·全国·课后作业
填空题-单空题 | 较易(0.85) |
名校
4 . 设两个独立事件AB都不发生的概率为A发生B不发生的概率和B发生A不发生的概率相同,则事件A发生的概率为___________.
2021-09-09更新 | 302次组卷 | 5卷引用:福建省厦门第一中学2021-2022学年高二上学期开学考试数学试题
5 . 甲乙两个质地均匀且完全一样的骰子,同时抛掷这两个骰子一次,记事件为“两个骰子朝上一面的数字之和为奇数”,事件为“甲骰子朝上一面的数字为奇数”,事件为“乙骰子朝上一面的数字为偶数”,则(       
A.事件是相互独立事件B.事件是互斥事件
C.D.
2021-08-07更新 | 1485次组卷 | 16卷引用:福建省厦门市松柏中学2021-2022学年高二上学期开学考试数学试题
填空题-单空题 | 较易(0.85) |
名校
6 . 展开式的的系数是________.
2020-03-15更新 | 312次组卷 | 1卷引用:2019届福建省厦门一中高三上学期返校考理科数学试题
7 . 某学生寝室6个人在“五一节”前一天各自准备了一份礼物送给室友,他们把6份礼物全部放在一个箱子里,每人从中随机拿一份礼物,则恰好有3个人拿到自己准备的那份礼物的概率为
A.B.C.D.
8 . 随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图得,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年5月份(即时)的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不形同,考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表见上表.
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程为,其中
9 . 为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动.“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车……”铿锵有力的话语,传递了绿色出行、低碳生活的理念.
某机构随机调查了本市部分成年市民某月骑车次数,统计如下:

人数  次数

年龄

[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]

18岁至31岁

8

12

20

60

140

150

32岁至44岁

12

28

20

140

60

150

45岁至59岁

25

50

80

100

225

450

60岁及以上

25

10

10

18

5

2

联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:
(1)估计本市一个18岁以上青年人每月骑车的平均次数;
(2)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

2018-03-12更新 | 230次组卷 | 1卷引用:福建省厦门外国语学校2018届高三下学期第一次(开学)考试数学(文)试题
10 . 某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:

(参考公式和计算结果:

(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求的值,并估计的预报值.
(2)现准备勘探新井,若通过1,3,5,7号并计算出的的值(精确到0.01)相比于(1)中的,值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.
2017-09-11更新 | 894次组卷 | 3卷引用:福建省厦门外国语学校2018届高三下学期第一次(开学)考试数学(理)试题
共计 平均难度:一般