组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 9 道试题
1 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴
当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:
___________.
___________.
(2)若,解方程.
(3)若正数ab满足,求的最小值.
2021-10-29更新 | 530次组卷 | 3卷引用:江苏省南通中学2020-2021学年高一上学期开学考试数学试题
2 . ,且.
(1)方程有且仅有一个解,求的取值范围.
(2)设,对,总,使成立,求的范围.
(3)若的图象关于对称,求不等式的解集.
2023-05-21更新 | 1192次组卷 | 6卷引用:辽宁省沈阳市第十一中学2022-2023学年高一下学期4月月考数学试题
3 . 已知函数为常数)
(1)定义:区间的长度为,若,问是否存在区间,使得时,的值域为,若存在,求出此区间长度的最大值;
(2)解关于的不等式:
(3)求函数上的最小值.
2022-11-01更新 | 336次组卷 | 1卷引用:山西大学附属中学校2022-2023学年高一上学期10月月考数学试题
4 . 为了求一个棱长为的正四面体的体积,某同学设计如下解法.
解:构造一个棱长为1的正方体,如图1:则四面体为棱长是的正四面体,且有.

(1)类似此解法,如图2,一个相对棱长都相等的四面体,其三组棱长分别为,求此四面体的体积;
(2)对棱分别相等的四面体中,.求证:这个四面体的四个面都是锐角三角形;
(3)有4条长为2的线段和2条长为的线段,用这6条线段作为棱且长度为的线段不相邻,构成一个三棱锥,问为何值时,构成三棱锥体积最大,最大值为多少?
[参考公式:三元均值不等式及变形,当且仅当时取得等号]
5 . 已知二次函数为常数)的对称轴为,其图像如图所示,则下列选项正确的有(       
A.
B.当时,函数的最大值为
C.关于的不等式的解为
D.若关于的函数与关于的函数有相同的最小值,则
2023-03-20更新 | 1665次组卷 | 12卷引用:湖北省武汉市华中师范大学第一附属中学2021年高中自主招生考试数学试题
6 . 已知函数
(1)问题:若关于x的方程______,求实数a的取值范围;
从下面给出的①②③三个条件中任选一个,补充到上面的问题中,并进行解答.
①有两个不等正实根;②有两个相异负实根;③有1个正实根和1个负实根.
(若选择多个方案分别解答,则按第一个解答记分.)
(2)当时,解关于x的不等式
(3)当时,若关于x的不等式的解集中有且仅有2023个整数,求实数a的取值范围.
2022-11-07更新 | 404次组卷 | 3卷引用:重庆市璧山区2022-2023学年高一上学期10调研数学试题
7 . 已知定义在上的函数,若存在实数使得对任意的实数恒成立,则称函数为“函数”;
(1)已知,判断它是否为“函数”;
(2)若函数是“函数”,当,求上的解.
(3)证明函数为“函数”并求所有符合条件的.
2024-05-22更新 | 123次组卷 | 1卷引用:上海市奉贤中学2023-2024学年高一下学期第三学程考试数学试卷
8 . 在面积为中,内角所对的边分别为,且
(1)若为锐角三角形,是关于的方程的解,求的取值范围;
(2)若的外接圆的直径为8,分别在线段上运动(包括端点),为边的中点,且的面积为.令,求的最小值.
2023-06-11更新 | 463次组卷 | 3卷引用:江苏省盐城市三校(盐城一中、亭湖高中、大丰中学)2022-2023学年高一下学期期中联考数学试题
9 . 已知向量.设函数
(1)求函数的解析式及其单调增区间;
(2)设,若方程上有两个不同的解,求实数的取值范围,并求的值.
(3)若将的图像上的所有点向左平移个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像.当(其中)时,记函数的最大值与最小值分别为,设,求函数的解析式.
共计 平均难度:一般