组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 54 道试题
1 . 球面三角学是研究球面三角形的边、角关系的一门学科.如图,球的半径为为球面上三点,劣弧的弧长记为,设表示以为圆心,且过的圆,同理,圆的劣弧的弧长分别记为,曲面(阴影部分)叫做曲面三角形,若,则称其为曲面等边三角形,线段与曲面围成的封闭几何体叫做球面三棱锥,记为球面.设,则下列结论正确的是(       

A.若平面是面积为的等边三角形,则
B.若,则
C.若,则球面的体积
D.若平面为直角三角形,且,则
2 . “圆锥容球”是指圆锥形容器里放了一个球,且球与圆锥的侧面及底面均相切(即圆锥的内切球).已知某圆锥形容器的母线与底面所成的角为,底面半径为2,则该圆锥内切球的表面积为______.(容器壁的厚度忽略不计)
2024-01-31更新 | 363次组卷 | 3卷引用:贵州省贵阳市第一中学2024届高三上学期高考适应性月考卷(五)数学试题
3 . 声强级(单位:)由公式给出,其中为声强(单位:),不同声的声强级如下,则(       
正常人能忍受最高声强正常人能忍受最低声强正常人平时谈话声强某人谈话声强
120080
A.B.C.D.
2023-12-03更新 | 337次组卷 | 2卷引用:贵州省贵阳市2024届高三上学期期中质量监测数学试卷
4 . 如图点分别是棱长为2的正方体六个面的中心,以为顶点的多面体记为八面体,则(       
   
A.四点共面B.八面体的外接球表面积为
C.八面体的体积为D.直线与八面体的各面所成的角都是
2023-11-26更新 | 318次组卷 | 1卷引用:贵州省贵阳市2024届高三上学期期中质量监测数学试卷
5 . 定义域为的函数满足,直线与两坐标轴分别交于两点,则(       
A.
B.的图象关于点对称
C.当直线的图象有三个交点时,三角形面积的最小值为2
D.函数在区间上有3个零点
2023-11-24更新 | 111次组卷 | 1卷引用:贵州省贵阳市2024届高三上学期期中质量监测数学试卷
6 . 函数的图象向右平移(其中)个单位得到曲线,若处的切线方程是,则曲线的一条对称轴方程为______
2023-11-24更新 | 157次组卷 | 1卷引用:贵州省贵阳市2024届高三上学期期中质量监测数学试卷
7 . 圆轴的负半轴和正半轴分别交于两点,是圆与轴垂直非直径的弦,直线与直线交于点,记动点的轨迹为
(1)求轨迹的方程;
(2)在平面直角坐标系中,倾斜角确定的直线称为定向直线.是否存在不过点的定向直线,当直线与轨迹交于时,;若存在,求直线的一个方向向量;若不存在,说明理由.
2023-11-24更新 | 561次组卷 | 5卷引用:贵州省贵阳市2024届高三上学期期中质量监测数学试卷
8 . 阅读材料:
在平面直角坐标系中,若点与定点(或的距离和它到定直线(或)的距离之比是常数,则,化简可得,设,则得到方程,所以点的轨迹是一个椭圆,这是从另一个角度给出了椭圆的定义.这里定点是椭圆的一个焦点,直线称为相应于焦点的准线;定点是椭圆的另一个焦点,直线称为相应于焦点的准线.
根据椭圆的这个定义,我们可以把到焦点的距离转化为到准线的距离.若点在椭圆上,是椭圆的右焦点,椭圆的离心率,则点到准线的距离为,所以,我们把这个公式称为椭圆的焦半径公式.
结合阅读材料回答下面的问题:
已知椭圆的右焦点为,点是该椭圆上第一象限的点,且轴,若直线是椭圆右准线方程,点到直线的距离为8.
(1)求点的坐标;
(2)若点也在椭圆上且的重心为,判断是否能构成等差数列?如果能,求出该等差数列的公差,如果不能,说明理由.
2024-01-24更新 | 424次组卷 | 3卷引用:贵州省贵阳市2023-2024学年高二上学期期末考试数学试卷
9 . 下列运算结果正确的是(       
A.B.
C.D.
2024-01-10更新 | 219次组卷 | 2卷引用:贵州省贵阳市清镇市博雅实验学校2023-2024学年高一上学期第三次月考数学试卷
10 . 请阅读下列材料,并解决问题:

圆锥曲线的第二定义

二次曲线,即圆锥曲线,是由一平面截二次锥面得到的曲线,包括椭圆,抛物线,双曲线等.2000多年前,古希腊数学家最先开始研究二次曲线,并获得了大量的成果.古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究二次曲线.阿波罗尼斯曾把椭圆叫“亏曲线”把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”,事实上,二次曲线由很多统一的定义、统一的二级结论等等.比如:平面内的动点到一个定点的距离和到定直线的距离的比是常数,则动点的轨迹就是圆锥曲线(这个圆锥曲线的第二定义).其中定点称为其焦点,定直线称为其准线(其中椭圆与双曲线的准线方程为,抛物线准线方程为),正常数称为其离心率.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.
(1)已知平面内的动点到一个定点的距离和到定直线的距离的比是常数,则动点的轨迹方程为                 (直接写出结果,无需过程).
(2)在(1)所求的曲线中是否存在一点,使得该点到直线的距离最小?最小距离是多少?
2023-12-28更新 | 471次组卷 | 4卷引用:贵州省清镇市博雅实验学校2023-2024学年高二上学期第四次月考数学试题数学
共计 平均难度:一般