组卷网 > 知识点选题 > 导数及其应用
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 84 道试题
1 . 已知抛物线上任意一点满足的最小值为为焦点).
(1)求的方程;
(2)过点的直线经过点且与物线交于两点,求证:
(3)过作一条倾斜角为的直线交抛物线于两点,过分别作抛物线的切线.两条切线交于点,过任意作一条直线交抛物线于,交直线于点,则满足什么关系?并证明.
2024-03-15更新 | 513次组卷 | 2卷引用:内蒙古呼和浩特市2024届高三第一次质量数据监测理科数学试卷
2 . 已知
(1)求函数的导数,并证明:函数上是严格减函数(常数为自然对数的底);
(2)根据(1),判断并证明的大小关系,并请推广至一般的结论(无须证明);
(3)已知是正整数,,求证:是满足条件的唯一一组值.
3 . (1)时,证明:
(2)直线与函数分别交于AB两点,与函数分别交于CD两点,设直线斜率为,直线斜率为,求证
2022-05-24更新 | 198次组卷 | 1卷引用:河北省石家庄市部分学校2022届高三下学期5月模拟数学试题
4 . 设直线,曲线.若直线与曲线同时满足下列两个条件:①直线与曲线相切且至少有两个切点;②对任意都有.则称直线为曲线的“上夹线”.
(1)已知函数.求证:为曲线的“上夹线”;
(2)观察下图:

根据上图,试推测曲线的“上夹线”的方程,并给出证明.
2021-08-24更新 | 373次组卷 | 3卷引用:陕西省宝鸡市千阳中学2019-2020学年高二下学期期末理科数学试题
智能选题,一键自动生成优质试卷~
5 . 已知常数,设
(1)若,求函数的最小值;
(2)是否存在,且依次成等比数列,使得依次成等差数列?请说明理由.
(3)求证:“”是“对任意,都有”的充要条件.
2024-04-16更新 | 397次组卷 | 2卷引用:上海市嘉定区2023-2024学年高三第二次质量调研数学试卷
6 . 如图,为坐标原点,为抛物线的焦点,过的直线交抛物线于两点,直线交抛物线的准线于点,设抛物线在点处的切线为

   

(1)若直线轴的交点为,求证:
(2)过点的垂线与直线交于点,求证:
2024-03-13更新 | 1553次组卷 | 4卷引用:湖北省七市州2024届高三下学期3月联合统一调研测试数学试题
7 . 拉格朗日中值定理是微分学的基本定理之一,其内容为:如果函数在闭区间上的图象连续不断,在开区间内的导数为,那么在区间内存在点,使得成立.设,其中为自然对数的底数,.易知,在实数集上有唯一零点,且

(1)证明:当时,
(2)从图形上看,函数的零点就是函数的图象与轴交点的横坐标.直接求解的零点是困难的,运用牛顿法,我们可以得到零点的近似解:先用二分法,可在中选定一个作为的初始近似值,使得,然后在点处作曲线的切线,切线与轴的交点的横坐标为,称的一次近似值;在点处作曲线的切线,切线与轴的交点的横坐标为,称的二次近似值;重复以上过程,得的近似值序列
①当时,证明:
②根据①的结论,运用数学归纳法可以证得:为递减数列,且.请以此为前提条件,证明:
2024-05-23更新 | 454次组卷 | 2卷引用:2024届广东省大湾区高三下学期联合模拟考试(二)数学试题
8 . 已知抛物线.
(1)直线交抛物线AB两点,求面积的最大值;
(2)已知PQ上的不同两点,且直线的斜率,直线分别交抛物线四点,求证:四点共圆.
2024-03-07更新 | 308次组卷 | 1卷引用:河南省中原名校2024届高三下学期3月联考数学试题
9 . 记集合,集合,若,则称直线为函数上的“最佳上界线”;若,则称直线为函数上的“最佳下界线”.
(1)已知函数.若,求的值;
(2)已知
(ⅰ)证明:直线是曲线的一条切线的充要条件是直线是函数上的“最佳下界线”;
(ⅱ)若,直接写出集合中元素的个数(无需证明).
2024-05-09更新 | 405次组卷 | 1卷引用:福建省福州市2023-2024学年高三下学期4月末质量检测数学试卷
10 . 定义:对于定义在区间上的函数,若存在实数,使得函数在区间上单调递增(递减),在区间上单调递减(递增),则称这个函数为单峰函数且称为最优点.已知定义在区间上的函数是以为最优点的单峰函数,在区间上选取关于区间的中心对称的两个试验点,称使得较小的试验点为好点(若相同,就任选其一),另一个称为差点.容易发现,最优点与好点在差点的同一侧.我们以差点为分界点,把区间分成两部分,并称好点所在的部分为存优区间,设存优区间为,再对区间重复以上操作,可以找到新的存优区间,同理可依次找到存优区间,满足,可使存优区间长度逐步减小.为了方便找到最优点(或者接近最优点),从第二次操作起,将前一次操作中的好点作为本次操作的一个试验点,若每次操作后得到的存优区间长度与操作前区间的长度的比值为同一个常数,则称这样的操作是“优美的”,得到的每一个存优区间都称为优美存优区间,称为优美存优区间常数.对区间进行次“优美的”操作,最后得到优美存优区间,令,我们可任取区间内的一个实数作为最优点的近似值,称之为在区间上精度为的“合规近似值”,记作.已知函数,函数.
(1)求证:函数是单峰函数;
(2)已知为函数的最优点,为函数的最优点.
(i)求证:
(ii)求证:.
注:.
2024-05-16更新 | 1072次组卷 | 2卷引用:浙江省宁波市2023-2024学年高三下学期高考模拟考试数学试题
共计 平均难度:一般