1 . 已知函数(为常数),函数.
(1)若函数有两个零点,求实数的取值的范围;
(2)当,设函数,若在上有零点,求的最小值.
(1)若函数有两个零点,求实数的取值的范围;
(2)当,设函数,若在上有零点,求的最小值.
您最近一年使用:0次
解题方法
2 . 已知,记(且).
(1)当(是自然对数的底)时,试讨论函数的单调性和最值;
(2)试讨论函数的奇偶性;
(3)拓展与探究:
① 当在什么范围取值时,函数的图象在轴上存在对称中心?请说明理由;
②请提出函数的一个新性质,并用数学符号语言表达出来.(不必证明)
(1)当(是自然对数的底)时,试讨论函数的单调性和最值;
(2)试讨论函数的奇偶性;
(3)拓展与探究:
① 当在什么范围取值时,函数的图象在轴上存在对称中心?请说明理由;
②请提出函数的一个新性质,并用数学符号语言表达出来.(不必证明)
您最近一年使用:0次
2024-04-19更新
|
690次组卷
|
2卷引用:上海市静安区2024届高三下学期期中教学质量调研数学试卷
3 . 若函数有3个不同的零点,分别记为,则下列说法正确的是( ).
A.是函数的一个零点 |
B.a的取值范围是 |
C. |
D.若,则a的范围是.(其中表示不超过实数x的最大整数,例如:,) |
您最近一年使用:0次
名校
4 . 已知函数,若函数 有 3 个极值点,则实数的取 值范围是_______ ; 若 ,则实数的取值范围是 _____
您最近一年使用:0次
名校
5 . 已知函数.
(1)若函数在定义域内单调递增,求实数的范围;
(2)若实数,求的单调递增区间;
(3)若函数有两个极值点且恒成立,求实数的取值范围.
(1)若函数在定义域内单调递增,求实数的范围;
(2)若实数,求的单调递增区间;
(3)若函数有两个极值点且恒成立,求实数的取值范围.
您最近一年使用:0次
2023-04-17更新
|
501次组卷
|
2卷引用:江苏省无锡市太湖高级中学2022-2023学年高二下学期期中数学试题
6 . 已知函数.
(1)若,求函数在上的最小值;
(2)若函数在上存在单调递增区间,求实数的取值范围;
(3)根据的不同取值,讨论函数的极值点情况.
(1)若,求函数在上的最小值;
(2)若函数在上存在单调递增区间,求实数的取值范围;
(3)根据的不同取值,讨论函数的极值点情况.
您最近一年使用:0次
2016-12-04更新
|
1420次组卷
|
2卷引用:2016届天津市和平区高三第四次模拟理科数学试卷
名校
7 . 已知为实数,函数.
(1)若是函数的一个极值点,求实数的取值;
(2)设,若,使得成立,求实数的取值范围.
(1)若是函数的一个极值点,求实数的取值;
(2)设,若,使得成立,求实数的取值范围.
您最近一年使用:0次
2017-09-23更新
|
1448次组卷
|
8卷引用:广西桂林市柳州市2018年届高三综合模拟金卷(1)理科数学试题
广西桂林市柳州市2018年届高三综合模拟金卷(1)理科数学试题广西桂林市柳州市2018年届高三综合模拟金卷(1)文科数学试题山东省栖霞市第一中学2018届高三4月模拟考试数学(理)试题黑龙江省牡丹江市第一高级中学2018-2019学年高二下学期期末数学(文)试题四川省宜宾市叙州区第一中学校2019-2020学年高二下学期第四学月考试数学(文)试题陕西省榆林市定边县第四中学2023届高三上学期第二次月考理科数学试题安徽省合肥市庐江县五校2022-2023学年高三上学期期末联考数学试题(已下线)第七章 导数与不等式能成立(有解)问题 专题一 单变量不等式能成立(有解)之参变分离法 微点1 单变量不等式能成立(有解)之参变分离法
名校
解题方法
8 . 已知函数.
(1)当时,求不等式的解集;
(2)若,求实数的取值范围.
(1)当时,求不等式的解集;
(2)若,求实数的取值范围.
您最近一年使用:0次
9 . 已知函数,设,若只有一个零点,则实数a的取值范围是______ ;若不等式的解集中有且只有三个整数,则实数a的取值范围是______ .
您最近一年使用:0次
2024-06-14更新
|
119次组卷
|
2卷引用:山东省潍坊市2023-2024学年高二下学期期中考试数学试题
名校
解题方法
10 . 已知函数,.
(1)若,求证:;
(2)若关于的不等式的解集为集合,且,求实数的取值范围.
(1)若,求证:;
(2)若关于的不等式的解集为集合,且,求实数的取值范围.
您最近一年使用:0次
2023-05-05更新
|
1162次组卷
|
3卷引用:江苏省南京市2023届高三二模数学试题