组卷网 > 知识点选题 > 双曲线中的定点、定值
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 258 道试题
1 . 平面内与两定点连线的斜率之积等于非零常数m的点的轨迹,加上两点所成的曲线记为曲线C.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)若时,对应的曲线为;对给定的,对应的曲线为.设的两个焦点,试问:在上是否存在点N,使得的面积,并证明你的结论.
2 . 已知双曲线的左、右焦点分别为,左、右顶点分别为为双曲线右支上的一点,且直线的斜率之积等于,则下列说法正确的是(       
A.双曲线的渐近线方程为
B.若,且,则
C.分别以线段为直径的两个圆内切
D.
2023-07-06更新 | 689次组卷 | 5卷引用:四川省南充市仪陇中学校2023-2024学年高二上学期12月月考数学试题
3 . 已知双曲线的离心率为,且过
(1)求双曲线的方程;
(2)若直线与双曲线交于两点,的右顶点,且直线的斜率之积为,证明:直线恒过定点,并求出该定点的坐标.
2023-06-27更新 | 1145次组卷 | 8卷引用:重庆市三峡名校联盟2023-2024学年高二上学期联考数学试卷
4 . 已知双曲线的左、右顶点分别为,且顶点到渐近线的距离为,点是双曲线右支上一动点(不与重合),且满足的斜率之积为.
(1)求双曲线的方程.
(2)过点的直线与双曲线交于轴上方的两点,若是线段的中点,是线段上一点,且为坐标原点,试判断直线的斜率之积是否为定值.若为定值,求出该定值;若不是,请说明理由.
5 . 已知双曲线经过点,且离心率为2.
(1)求的方程;
(2)过点轴的垂线,交直线于点,交轴于点.设点为双曲线上的两个动点,直线的斜率分别为,若,求.
6 . 已知直线与双曲线的右支交于不同的两点,与轴交于点,且直线上存在一点满足不与重合).
(1)求实数的取值范围;
(2)证明:当变化时,点的纵坐标为定值.
7 . 已知双曲线经过点,一条渐近线方程为,直线交双曲线于两点.
(1)求双曲线的方程.
(2)若过双曲线的右焦点,是否存在轴上的点,使得直线绕点无论怎样转动,都有成立?若存在,求实数的值;若不存在,请说明理由.
2023-10-16更新 | 1027次组卷 | 5卷引用:广东省深圳市深圳大学附属实验中学2022-2023学年高二上学期12月段考数学试题
8 . 已知点P为双曲线上任意一点,为其左、右焦点,O为坐标原点.过点P向双曲线两渐近线作垂线,设垂足分别为MN,则下列所述正确的是(       
A.为定值B.OPMN四点一定共圆
C.的最小值为D.存在点P满足PM三点共线时,PN三点也共线

9 . 已知双曲线的离心率为,点在双曲线上.


(1)求双曲线的方程;
(2)设过点的直线与曲线交于两点,问在轴上是否存在定点,使得为常数?若存在,求出点坐标及此常数的值,若不存在,说明理由.
2023-08-10更新 | 721次组卷 | 6卷引用:江苏省如东一中、徐州中学、宿迁一中2023-2024学年高二上学期10月阶段性联考数学试题

10 . 已知双曲线的右焦点为,左、右顶点分别为,点是双曲线上异于左、右顶点的一点,则下列说法正确的是(       

A.过点有且仅有条直线与双曲线有且仅有一个交点
B.点关于双曲线的渐近线的对称点在双曲线
C.若直线的斜率分别为,则
D.过点的直线与双曲线交于两点,则的最小值为
首页5 6 7 8 9 10 11 12 末页
跳转: 确定
共计 平均难度:一般