组卷网 > 知识点选题 > 离散型随机变量及其分布列、均值与方差
解析
| 共计 5586 道试题
1 . 某医学小组为了比较白鼠注射AB两种药物后产生的皮肤疱疹的面积,选20只健康白鼠做试验.将这20只白鼠随机分成两组,每组10只,其中第1组注射药物A,第2组注射药物B.试验结果如下表所示.

疱疹面积(单位:

第1组(只)

3

4

1

2

0

第2组(只)

1

3

2

3

1

(1)现分别从第1组,第2组的白鼠中各随机选取1只,求被选出的2只白鼠皮肤疱疹面积均小于的概率;
(2)从两组皮肤疱疹面积在区间内的白鼠中随机选取3只抽血化验,求第2组中被抽中白鼠只数的分布列和数学期望
(3)用“”表示第组白鼠注射药物后皮肤疱疹面积在区间内,“”表示第组白鼠注射药物后皮肤疱疹面积在区间内(),写出方差的大小关系.(结论不要求证明)
2024-04-21更新 | 664次组卷 | 1卷引用:北京市丰台区2023-2024学年高三下学期综合练习(一)数学试题
2 . 产品质量是企业的生命线,为提高产品质量.企业非常重视产品生产线的质量,某企业引进了生产同一种产品的AB两条生产线,为比较两条生产线的质量,从AB生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.

(1)请完成列联表:并依据小概率值的独立性检验,分析一级品率是否与生产线有关?


一级品

非一级品

合计

A生产线




B生产线




合计





(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.
①分别估计AB生产线生产一件产品的平均利润;
②你认为哪条生产线的利润较为稳定?并说明理由.
附:①参考公式:,其中.
②临界表值:

0.10

0.02

0.010

0.005

0.001

2.706

3.841

6.635

7.897

10.828

2024-04-21更新 | 256次组卷 | 2卷引用:湖南省长沙麓山国际实验学校2023-2024学年高二4月学情检测数学试题
3 . 时下流行的直播带货与主播的学历层次有某些相关性,某调查小组就两者的关系进行调查,从网红的直播中得到容量为200的样本,将所得直播带货和主播的学历层次的样本观测数据整理如下:
主播的学历层次直播带货评级合计

优秀

良好

本科及以上

60

40

100

专科及以下

30

70

100

合计

90

110

200

(1)依据小概率值的独立性检验,分析直播带货的评级与主播学历层次是否有关?
(2)现从主播学历层次为本科及以上的样本中,按分层抽样的方法选出5人组成一个小组,从抽取的5人中再抽取3人参加主播培训,求这3人中,主播带货优秀的人数的概率分布和数学期望;
(3)统计学中常用表示在事件条件下事件发生的优势,称为似然比,当时,我们认为事件条件下发生有优势.现从这200人中任选1人,表示“选到的主播带货良好”,表示“选到的主播学历层次为专科及以下”,请利用样本数据,估计的值,并判断事件条件下发生是否有优势.
附:

       

0.0500.0100.001

3.8416.63510.828
2024-04-21更新 | 368次组卷 | 2卷引用:广东省深圳市盐田高级中学2023-2024学年高二下学期4月月考数学试题
4 . 近日,欧冠拉开帷幕,引得无数球迷的纷纷关注,成了体育竞技赛事的又一热点,为此某中学组织人员对在校学生“是否热爱踢足球”做了一次随机调查.共随机调查了18名男生和12名女生,调查发现,男、女生中分别有12人和6人喜爱该项运动,其余不喜爱.
(1)根据以上数据完成以下列联表.
喜欢踢足球不喜欢踢足球合计
合计
依据小概率值的独立性检验,分析性别与喜欢踢足球是否有关?
(2)从被调查的女生中随机抽取3人,若其中喜爱踢足球的人数为,求的分布列及数学期望.
附:,其中.
0.150.100.050.0250.0100.0050.001
2.0722.7063.8415.0246.6357.87910.828
2024-04-21更新 | 349次组卷 | 2卷引用:河南省TOP二十名校2023-2024学年高三下学期质检二数学试题
5 . 某校在课外活动期间设置了文化艺术类活动和体育锻炼类活动,为了解学生对这两类活动的参与情况,统计了如下数据:


文化艺术类

体育锻炼类

合计

100

300

400

50

100

150

合计

150

400

550


(1)通过计算判断,有没有90%的把握认为该校学生所选择课外活动的类别与性别有关系?
(2)“投壶”是中国古代宴饮时做的一种投掷游戏,也是一种礼仪.该校文化艺术类课外活动中,设置了一项“投壶”活动.已知甲、乙两人参加投壶活动,投中1只得1分,未投中不得分,据以往数据,甲每只投中的概率为,乙每只投中的概率为,若甲、乙两人各投2只,记两人所得分数之和为,求的分布列和数学期望.

   

附表及公式:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

其中
2024-04-21更新 | 613次组卷 | 4卷引用:四川省遂宁市2024届高三第二次诊断性考试数学(理)试题
6 . 2023年12月2日,中央广播电视总台甲辰龙年春晚的主标识正式发布,中央广播电视总台《2024年春节联欢晚会》以“龙行龘龘,欣欣家国”为主题,创新“思想+艺术+技术”融合传播,与全球华人相约除夕,共享一台精彩纷呈、情真意切、热气腾腾的文化盛宴.为了解大家对“龘”这个字的认知情况,某网站进行了调查,并对每一类情况赋予相应的认知度分值,得到如下表格:

认知情况

A类:不会读不会写

B类:会读不会写

C类:会读且会写但不理解

D类:会读、会写且理解

人数/万人

10

30

5

5

认知度分值

50

70

90

100

(1)求参与调查的人员认知度分值的平均数与方差;
(2)为了帮助大家记住这个主题,该网站设计了一个有奖游戏,参与者点击游戏按钮,“龙行龘龘,欣欣家国”这8个字将进行随机排列,若相同的字分别相邻(即龘与龘相邻,欣与欣相邻),则这个参与者可以获得奖励,已知每个参与者是否获得奖励互不影响,若2人同时参与游戏,求恰好有1人获得奖励的概率;
(3)若从参与调查的人员中按照分层抽样的方法抽取20人进行座谈,再从这20人中随机选取3人赠送小礼品,这3人中属于D类的人数记为X,求X的分布列及数学期望.
2024-04-21更新 | 226次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试数学理科猜题卷(二)
7 . 袋中有大小相同的小球10个,其中黑球3个,红球个,白球个,.从中任取2个球,至少有1个红球的概率为.
(1)任取3球,求取出的球中恰有2球同色的概率;
(2)任取2球,取到1个红球得2分,取到1个白球得0分,取到1个黑球得分,求总得分的概率分布列及数学期望.
2024-04-21更新 | 223次组卷 | 1卷引用:浙江省三锋教研联盟2023-2024学年高二下学期4月期中联考数学试题
8 . 《中华人民共和国体育法》规定,国家实行运动员技术等级制度,下表是我国现行《田径运动员技术等级标准》(单位:m)(部分摘抄):

项目

国际级运动健将

运动健将

一级运动员

二级运动员

三级运动员

男子跳远

8.00

7.80

7.30

6.50

5.60

女子跳远

6.65

6.35

5.85

5.20

4.50

在某市组织的考级比赛中,甲、乙、丙三名同学参加了跳远考级比赛,其中甲、乙为男生,丙为女生,为预测考级能达到国家二级及二级以上运动员的人数,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):
甲:6.60,6.67,6.55,6.44,6.48,6.42,6.40,6.35,6.75,6.25;
乙:6.38,6.56,6.45,6.36,6.82,7.38;
丙:5.16,5.65,5.18,5.86.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立,
(1)估计甲在此次跳远考级比赛中成绩达到二级及二级以上运动员的概率;
(2)设X是甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员的总人数,估计X的数学期望
(3)在跳远考级比赛中,每位参加者按规则试跳6次,取6次试跳中的最好成绩作为其最终成绩本次考级比赛中,甲已完成6次试跳,丙已完成5次试跳,成绩(单位:m)如下表:

第1跳

第2跳

第3跳

第4跳

第5跳

第6跳

6.50

6.48

6.47

6.51

6.46

6.49

5.84

5.82

5.85

5.83

5.86

a

若丙第6次试跳的成绩为a,用分别表示甲、丙试跳6次成绩的方差,当时,写出a的值.(结论不要求证明)
2024-04-21更新 | 414次组卷 | 1卷引用:2024届北京市房山区高三一模数学试卷
9 . 某市举办了党史知识竞赛.初赛采用“两轮制”方式进行,要求每个单位派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.某单位派出甲、乙两个小组参赛,在初赛中,若甲小组通过第一轮与第二轮比赛的概率分别是,乙小组通过第一轮与第二轮比赛的概率分别是,且各个小组所有轮次比赛的结果互不影响.
(1)若该单位获得决赛资格的小组个数为,求的分布列与数学期望;
(2)已知甲、乙两个小组都获得了决赛资格,决赛以抢答题形式进行.假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率.若最后一道题被该单位的某小组抢到,且甲、乙两个小组抢到该题的可能性分别是,该题如果被答对,计算恰好是甲小组答对的概率.
2024-04-21更新 | 269次组卷 | 1卷引用:内蒙古自治区呼和浩特市第二中学2023-2024学年高二下学期4月月考数学试题
10 . 为了解居民体育锻炼情况,某地区对辖区内居民体育锻炼进行抽样调查,统计其中400名居民体育锻炼的次数与年龄,得到如下的频数分布表.
             年龄
次数

每周0~2次

70

55

36

59

每周3~4次

25

40

44

31

每周5次及以上

5

5

20

10

(1)若把年龄在的锻炼者称为青年,年龄在的锻炼者称为中年,每周体育锻炼不超过2次的称为体育锻炼频率低,不低于3次的称为体育锻炼频率高,根据小概率值的独立性检验判断体育锻炼频率的高低与年龄是否有关联;
(2)从每周体育锻炼5次及以上的样本锻炼者中,按照表中年龄段采用按比例分配的分层随机抽样,抽取8人,再从这8人中随机抽取3人,记这3人中年龄在的人数分别为,求的分布列与期望;
(3)已知小明每周的星期六、星期天都进行体育锻炼,且两次锻炼均在跑步、篮球、羽毛球3种运动项目中选择一种,已知小明在某星期六等可能选择一种运动项目,如果星期六选择跑步、篮球、羽毛球,则星期天选择跑步的概率分别为,求小明星期天选择跑步的概率.
参考公式:
附:
0.100.050.010.0050.001
2.7063.8416.6357.87910.828
2024-04-20更新 | 172次组卷 | 1卷引用:新疆喀什地区2023-2024学年高三下学期4月适应性检测数学试题
首页5 6 7 8 9 10 11 12 末页
跳转: 确定
共计 平均难度:一般