组卷网 > 章节选题 > 1.3 集合的基本运算
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 48 道试题
1 . 设为正整数,集合对于,设集合.
(1)若,写出集合
(2)若,且满足,求证:
(3)若,且 ,求证: .
7日内更新 | 132次组卷 | 1卷引用:北京市朝阳区2024届高三下学期质量检测二数学试题
解答题-证明题 | 较难(0.4) |
名校
2 . 设非空数集M,对于M中的任意两个元素,如果满足:①两个元素之和属于M   ②两个元素之差属于M.③两个元素之积属于M   ④两个元素之商(分母不为零)也属于M.定义:满足条件①②③的数集M为数环(即数环对于加、减、乘运算封闭);满足④的数环M为数域(即数域对于加、减、乘、除运算封闭).
(1)判断自然数集N、整数集Z、有理数集Q、实数集R、复数集C是不是数环,假如该集合是数环,那么它是不是数域(无需说明理由);
(2)若M是一个数环,证明:;若S是一个数域,证明:
(3)设,证明A是数域.
2024-04-25更新 | 251次组卷 | 1卷引用:浙江省台金七校联盟2023-2024学年高一下学期4月期中联考数学试题
解答题-证明题 | 困难(0.15) |
名校
3 . 对称变换在对称数学中具有重要的研究意义.若一个平面图形Km(旋转变换或反射变换)的作用下仍然与原图形重合,就称K具有对称性,并记mK的一个对称变换.例如,正三角形R(绕中心O作120°的旋转)的作用下仍然与R重合(如图1图2所示),所以R的一个对称变换,考虑到变换前后R的三个顶点间的对应关系,记;又如,R(关于对称轴所在直线的反射)的作用下仍然与R重合(如图1图3所示),所以也是R的一个对称变换,类似地,记.记正三角形R的所有对称变换构成集合S.一个非空集合G对于给定的代数运算.来说作成一个群,假如同时满足:
I.
II.
Ⅲ.
Ⅳ.
对于一个群G,称Ⅲ中的e为群G的单位元,称Ⅳ中的a在群G中的逆元.一个群G的一个非空子集H叫做G的一个子群,假如H对于G的代数运算来说作成一个群.

   

(1)直接写出集合S(用符号语言表示S中的元素);
(2)同一个对称变换的符号语言表达形式不唯一,如.对于集合S中的元素,定义一种新运算*,规则如下:
①证明集合S对于给定的代数运算*来说作成一个群;
②已知H是群G的一个子群,e分别是GH的单位元,分别是a在群G,群H中的逆元.猜想e之间的关系以及之间的关系,并给出证明;
③写出群S的所有子群.
2024-04-15更新 | 1061次组卷 | 4卷引用:安徽省芜湖市安徽师范大学附属中学2024届高三第二次模拟考试数学试题

4 . 设集合为正整数集的两个子集,至少各有两个元素.对于给定的集合,若存在满足如下条件的集合

①对于任意,若,都有;②对于任意,若,则.则称集合为集合的“集”.


(1)若集合,求的“集”
(2)若三元集存在“集”,且中恰含有4个元素,求证:
(3)若存在“集”,且,求的最大值.
2024-03-28更新 | 497次组卷 | 1卷引用:重庆市南开中学校2023-2024学年高三下学期第七次质量检测数学试题
智能选题,一键自动生成优质试卷~
解答题-证明题 | 困难(0.15) |
名校
5 . 已知集合),若存在数阵满足:


则称集合为“好集合”,并称数阵的一个“好数阵”.
(1)已知数阵的一个“好数阵”,试写出的值;
(2)若集合为“好集合”,证明:集合的“好数阵”必有偶数个;
(3)判断是否为“好集合”.若是,求出满足条件的所有“好数阵”;若不是,说明理由.
6 . 设A是正整数集的一个非空子集,如果对于任意,都有,则称A为自邻集.记集合的所有子集中的自邻集的个数为
(1)直接写出的所有自邻集;
(2)若n为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
(3)若,求证:
2024-03-15更新 | 267次组卷 | 1卷引用:北京市第八中学2023-2024学年高三下学期3月月考数学试题
解答题-证明题 | 较难(0.4) |
名校
7 . 设为正整数,集合. 任取集合A中的个元素(可以重复),其中.
(1)若,直接写出
(2)对于,证明:
(3)对于某个正整数,若集合A满足:对于A中任意个元素,都有,则称集合A具有性质. 证明:若,集合A具有性质,则,集合A都具有性质.
2024-03-08更新 | 207次组卷 | 1卷引用:北京市海淀区人大附中2024届高三下学期寒假自主复习检测数学试题
解答题-证明题 | 较难(0.4) |
名校
8 . 已知有个连续正整数元素的有限集合),记有序数对,若对任意A同时满足下列条件,则称元完备数对.
条件①:
条件②:.
(1)试判断是否存在3元完备数对和4元完备数对,并说明理由;
(2)试证明不存在8元完备数对.
9 . 给定正整数,设集合.对于集合中的任意元素,记.设,且集合,对于中任意元素,若则称具有性质
(1)判断集合是否具有性质?说明理由;
(2)判断是否存在具有性质的集合,并加以证明.
2024-01-25更新 | 266次组卷 | 4卷引用:北京市海淀区北京交通大学附属中学2023-2024学年高二上学期期中练习数学试题
23-24高一上·上海·期中
解答题-证明题 | 较难(0.4) |
名校
10 . 对于正整数,定义.对于任意的,称的第个分量,称的一个“协同子集”.如果同时满足:①的元素个数不少于;②对于任何,存在,使得的第个分量都是
(1)对于,若的一个恰好含有四个元素的“协同子集”,且其中两个元素是,直接写出另外两个元素;
(2)证明:若的一个“协同子集”,则的元素个数不超过
(3)证明:若的一个“协同子集”,且的元素个数恰好是,则存在唯一的,使得中所有元素的第个分量都是
2023-12-15更新 | 197次组卷 | 2卷引用:上海市华东师范大学第二附属中学2023-2024学年高一上学期期中考试数学试题
共计 平均难度:一般