名校
解题方法
1 . 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受.形如的数称为复数,其中称为实部,称为虚部,i称为虚数单位,.当时,为实数;当且时,为纯虚数.其中,叫做复数的模.设,,,,,,如图,点,复数可用点表示,这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应,反过来,复平面内的每一个点,有唯一的一个复数和它对应.一般地,任何一个复数都可以表示成的形式,即,其中为复数的模,叫做复数的辐角,我们规定范围内的辐角的值为辐角的主值,记作.叫做复数的三角形式.
(2)设复数,,其中,求;
(3)在中,已知、、为三个内角的对应边.借助平面直角坐标系及阅读材料中所给复数相关内容,证明:
①;
②,,.
注意:使用复数以外的方法证明不给分.
(1)设复数,,求、的三角形式;
(2)设复数,,其中,求;
(3)在中,已知、、为三个内角的对应边.借助平面直角坐标系及阅读材料中所给复数相关内容,证明:
①;
②,,.
注意:使用复数以外的方法证明不给分.
您最近一年使用:0次
2024-03-12更新
|
735次组卷
|
5卷引用:黑龙江省哈尔滨师范大学附属中学2023-2024学年高一下学期开学考试数学试卷
黑龙江省哈尔滨师范大学附属中学2023-2024学年高一下学期开学考试数学试卷(已下线)模块五 专题六 全真拔高模拟2(已下线)第七章:复数(新题型)-同步精品课堂(人教A版2019必修第二册)湖北省黄冈市浠水县第一中学2023-2024学年高一下学期期中考试数学试卷重庆市缙云教育联盟2023-2024学年高一下学期3月月度质量检测数学试题
2 . 对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足;
2.(结合律)对于规定的“×”运算,对任意,都须满足;
3.(恒等元)存在,使得对任意,;
4.(逆的存在性)对任意,都存在,使得.
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群;
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
1.(封闭性)对于规定的“×”运算,对任意,都须满足;
2.(结合律)对于规定的“×”运算,对任意,都须满足;
3.(恒等元)存在,使得对任意,;
4.(逆的存在性)对任意,都存在,使得.
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群;
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
您最近一年使用:0次
3 . 已知,,求证:
(1);
(2);
(3);
(4).
(1);
(2);
(3);
(4).
您最近一年使用:0次
2023-10-09更新
|
192次组卷
|
5卷引用:习题 5-2
(已下线)习题 5-2(已下线)【高一模块四】回归3 复数的课本典型例题和习题【导学案】2.2复数的乘法与除法课前预习-北师大版2019必修第二册第五章复数北师大版(2019)必修第二册课本习题 习题5-27.2.2复数的乘、除运算练习
4 . 证明:若,则(是任意的非零复数).
您最近一年使用:0次
5 . (1)已知,,求证:;
(2)求函数的最小值.
(2)求函数的最小值.
您最近一年使用:0次
2023-02-06更新
|
331次组卷
|
6卷引用:7.2.1 复数的加、减运算及其几何意义-高一数学同步精品课堂(人教A版2019必修第二册)
(已下线)7.2.1 复数的加、减运算及其几何意义-高一数学同步精品课堂(人教A版2019必修第二册)(已下线)7.2.1复数的加、减运算及其几何意义【第三练】“上好三节课,做好三套题“高中数学素养晋级之路(已下线)7.2.1?复数的加、?减运算及其几何意义——课后作业(提升版)(已下线)7.2.1?复数的加、?减运算及其几何意义——课后作业(巩固版)沪教版(2020) 一轮复习 堂堂清 第六单元 6.4 复数的运算(已下线)第七章《复数》同步单元必刷卷(培优卷)-2022-2023学年高一数学《考点·题型·技巧》精讲与精练高分突破系列(人教A版2019必修第二册)
真题
名校
6 . 对任意一个非零复数z,定义集合.
(1)设a是方程的一个根,试用列举法表示集合.若在中任取两个数,求其和为零的概率P;
(2)设复数,求证:.
(1)设a是方程的一个根,试用列举法表示集合.若在中任取两个数,求其和为零的概率P;
(2)设复数,求证:.
您最近一年使用:0次
2022-11-09更新
|
1056次组卷
|
5卷引用:第九章 复数(压轴题专练)-单元速记·巧练(沪教版2020必修第二册)
(已下线)第九章 复数(压轴题专练)-单元速记·巧练(沪教版2020必修第二册)(已下线)7.2.2复数的乘、除运算——课后作业(提升版)(已下线)压轴题06向量、复数压轴题16题型汇总-12001年普通高等学校招生考试数学(理)试题(上海卷)5.2复数的四则运算 测试卷-2022-2023学年高一数学北师大版(2019)必修第二册
7 . 求证:复平面内分别与复数,,,对应的四点、、、共圆.
您最近一年使用:0次
2023-01-09更新
|
149次组卷
|
7卷引用:7.1.2 复数的几何意义-高一数学同步精品课堂(人教A版2019必修第二册)
(已下线)7.1.2 复数的几何意义-高一数学同步精品课堂(人教A版2019必修第二册)(已下线)7.1.2?复数的几何意义——课后作业(提升版)沪教版(2020) 必修第二册 新课改一课一练 第9章 9.2 复数的几何意义(已下线)7.1.2 复数的几何意义(分层作业)-【上好课】2022-2023学年高一数学同步备课系列(人教A版2019必修第二册)第十章 复数(B卷·能力提升练)-【单元测试】2022-2023学年高一数学分层训练AB卷(人教B版2019必修第四册)【课堂练】 9.2.1 复平面与复数的坐标表示 + 9.2.2 复数的向量表示 随堂练习-沪教版(2020)必修第二册 第9章 复数(已下线)第15讲 复数的几何意义
8 . 已知复数,,,分别记作,,,即,,,求证:
(1);
(2);
(3).
(1);
(2);
(3).
您最近一年使用:0次
2023-01-06更新
|
174次组卷
|
5卷引用:专题7.4 复数运算的综合应用大题专项训练-举一反三系列-
(已下线)专题7.4 复数运算的综合应用大题专项训练-举一反三系列-沪教版(2020) 必修第二册 新课改一课一练 第9章 9.1 复数及其四则运算(已下线)专题7.4 复数的四则运算(重难点题型检测)-2022-2023学年高一数学举一反三系列(人教A版2019必修第二册)【课堂练】9.1.1 复数的引入与复数的四则运算 随堂练习-沪教版(2020)必修第二册 第9章 复数(已下线)12.2 复数的四则运算(2)-2022-2023学年高一数学《考点·题型·技巧》精讲与精练高分突破系列(苏教版2019必修第二册)
解题方法
9 . 已知复数(a,),存在实数t,使成立.
(1)求证:为定值;
(2)若,求a的取值范围.
(1)求证:为定值;
(2)若,求a的取值范围.
您最近一年使用:0次
2023-01-06更新
|
387次组卷
|
9卷引用:第7.2.1讲 复数的加、减运算及其几何意义-同步精讲精练宝典
(已下线)第7.2.1讲 复数的加、减运算及其几何意义-同步精讲精练宝典(已下线)7.2.1复数的加、减运算及其几何意义【第三课】“上好三节课,做好三套题“高中数学素养晋级之路沪教版(2020) 25天高考冲刺 双新双基百分百2(已下线)第七章 复数(基础检测卷)(已下线)第七章 复数 全章重点题型大总结 (精讲)(2)-【精讲精练】2022-2023学年高一数学下学期同步精讲精练(人教A版2019必修第二册)(已下线)第七章 复数(知识通关)2(已下线)重难点专题03 复数-2022-2023学年高一数学重难点题型分类必刷题(人教B版2019必修第四册)江苏省无锡市青山高级中学2024-2025学年高二上学期10月月考数学试题(已下线)12.1 复数的概念-2022-2023学年高一数学《考点·题型·技巧》精讲与精练高分突破系列(苏教版2019必修第二册)
解题方法
10 . 设M是由复数组成的集合,对M的一个子集A,若存在复平面上的一个圆,使得A的所有数在复平面上对应的点都在圆内或圆周上,且中的数对应的点都在圆外,则称A是一个M的“可分离子集”.
(1)判断是否是的“可分离子集”,并说明理由;
(2)设复数z满足,其中分别表示z的实部和虚部.证明:是的“可分离子集”当且仅当.
(1)判断是否是的“可分离子集”,并说明理由;
(2)设复数z满足,其中分别表示z的实部和虚部.证明:是的“可分离子集”当且仅当.
您最近一年使用:0次