1 . 若函数的图象上的两个不同点处的切线互相重合,则称该切线为函数的图象的“自公切线”,称这两点为函数的图象的一对“同切点”.
(1)分别判断函数与的图象是否存在“自公切线”,并说明理由;
(2)若,求证:函数有唯一零点且该函数的图象不存在“自公切线”;
(3)设,的零点为,,求证:“存在,使得点与是函数的图象的一对‘同切点’”的充要条件是“是数列中的项”.
(1)分别判断函数与的图象是否存在“自公切线”,并说明理由;
(2)若,求证:函数有唯一零点且该函数的图象不存在“自公切线”;
(3)设,的零点为,,求证:“存在,使得点与是函数的图象的一对‘同切点’”的充要条件是“是数列中的项”.
您最近一年使用:0次
2 . 设X,Y为任意集合,映射.定义:对任意,若,则,此时的为单射.
(1)试在上给出一个非单射的映射;
(2)证明:是单射的充分必要条件是:给定任意其他集合与映射,若对任意,有,则;
(3)证明:是单射的充分必要条件是:存在映射,使对任意,有.
(1)试在上给出一个非单射的映射;
(2)证明:是单射的充分必要条件是:给定任意其他集合与映射,若对任意,有,则;
(3)证明:是单射的充分必要条件是:存在映射,使对任意,有.
您最近一年使用:0次
3 . 已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
(1)试判断集合是否具有性质,并说明理由;
(2)若集合具有性质,证明:集合是集合的“期待子集”;
(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.
(1)试判断集合是否具有性质,并说明理由;
(2)若集合具有性质,证明:集合是集合的“期待子集”;
(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.
您最近一年使用:0次
2024-02-21更新
|
2559次组卷
|
9卷引用:广东省东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第四次六校联考数学试题
广东省东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第四次六校联考数学试题(已下线)专题1 集合新定义题(九省联考第19题模式)讲(已下线)专题1 集合新定义题(九省联考第19题模式)练安徽省芜湖市安徽师大附中2023-2024学年高二下学期3月测试数学试题(已下线)拔高点突破01 集合背景下的新定义压轴解答题(四大题型)福建省宁德市福鼎市第一中学2024-2025学年高三上学期第一次考试数学试题江苏省木渎高级中学2024-2025学年高一上学期十月调研测试数学试题河南省郑州市第一中学2024-2025学年高一上学期第一次模拟测试数学试题江苏省苏州实验中学2024-2025学年高一上学期10月月考数学试题
名校
解题方法
4 . 若数列满足:,且,则称为一个数列.对于一个数列,若数列满足:,且,则称为的伴随数列.
(1)若数列中,,写出其伴随数列中的值;
(2)若为一个数列,为的伴随数列
①证明:“为常数列”是“为等比数列的充要条件;
②求的最大值.
(1)若数列中,,写出其伴随数列中的值;
(2)若为一个数列,为的伴随数列
①证明:“为常数列”是“为等比数列的充要条件;
②求的最大值.
您最近一年使用:0次
2023-12-11更新
|
1485次组卷
|
2卷引用:广东省2024届高三数学新改革适应性训练一(九省联考题型)