组卷网 > 知识点选题 > 利用组合数公式证明
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 8 道试题
1 . 杨辉是我国古代数学史上一位著述丰富的数学家,著有《详解九章算法》《日用算法》和《杨辉算法》,杨辉在1261年所著的《详解九章算法》给出了如下图1所示的表,我们称这个表为杨辉三角,图2是杨辉三角的数字表示,杨辉三角的发现要比欧洲早500年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.
   
杨辉三角本身包含了很多有趣的性质,利用这些性质,可以解决很多数学问题.
性质1:杨辉三角的第行就是的展开式的二项式系数;
性质2(对称性):每行中与首末两端“等距离”之数相等,即
性质3(递归性):除1以外的数都等于肩上两数之和,即
性质4:自腰上的某个1开始平行于腰的一条线上的连续个数的和等于最后一个数斜右下方的那个数,比如:
请回答以下问题:
(1)求杨辉三角中第8行的各数之和;
(2)证明:
(3)在的展开式中,求含项的系数.
2023-07-25更新 | 622次组卷 | 9卷引用:安徽省芜湖市2022-2023学年高二下学期教学质量统测数学试题
2 . (1)已知是自然数,是正整数,且.证明组合数性质:
(2)按(1)中的组合数性质公式,有.请自编一个计数问题,使得为该问题的两个不同的解法,并简要说明解法的依据.
2023-06-20更新 | 109次组卷 | 1卷引用:上海市静安区2022-2023学年高二下学期期末数学试题
3 . 五一小长假到来,多地迎来旅游高峰期,各大旅游景点都推出了种种新奇活动以吸引游客,小明去成都某熊猫基地游玩时,发现了一个趣味游戏,游戏规则为:在一个足够长的直线轨道的中心处有一个会走路的机器人,游客可以设定机器人总共行走的步数,机器人每一步会随机选择向前行走或向后行走,且每一步的距离均相等,若机器人走完这些步数后,恰好回到初始位置,则视为胜利.
(1)若小明设定机器人一共行走4步,记机器人的最终位置与初始位置的距离为步,求的分布列和期望;
(2)记为设定机器人一共行走步时游戏胜利的概率,求,并判断当为何值时,游戏胜利的概率最大;
(3)该基地临时修改了游戏规则,要求机器人走完设定的步数后,恰好第一次回到初始位置,才视为胜利.小明发现,利用现有的知识无法推断设定多少步时获得胜利的概率最大,于是求助正在读大学的哥哥,哥哥告诉他,“卡特兰数”可以帮助他解决上面的疑惑:将个0和个1排成一排,若对任意的,在前个数中,0的个数都不少于1的个数,则满足条件的排列方式共有种,其中,的结果被称为卡特兰数.若记为设定机器人行走步时恰好第一次回到初始位置的概率,证明:对(2)中的,有
2023-05-02更新 | 2575次组卷 | 7卷引用:湖南省长沙市第一中学2022-2023学年高二下学期期末数学试题
解答题-证明题 | 适中(0.65) |
4 . (1)求证:
(2)求证:
(3)若mnr均为正整数,试证明:
2023-01-03更新 | 252次组卷 | 2卷引用:沪教版(2020) 选修第二册 堂堂清 第6章 6.3(2)组合(组合数的性质)
智能选题,一键自动生成优质试卷~
21-22高二下·重庆·期末
5 . 杨辉三角形,又称贾宪三角形,是二项式系数)在三角形中的一种几何排列,北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋时期杭州人杨辉在他1261年所著的《详解九章算法》一书中,辑录了如下图所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”,故此,杨辉三角又被称为“贾宪三角”,杨辉三角形的构造法则为:三角形的两个腰都是由数字1组成的,其余的数都等于它肩上的两个数字相加.根据以上信息及二项式定理的相关知识分析,下列说法中正确的是(       
A.
B.当时,
C.为等差数列
D.存在,使得为等差数列
2022-07-06更新 | 1243次组卷 | 6卷引用:第5讲 二项式定理11种题型总结(4)
20-21高二下·河北保定·阶段练习
解答题-证明题 | 适中(0.65) |
6 . (1)解不等式
(2)求证:①
2022-02-21更新 | 914次组卷 | 7卷引用:第三章 排列、组合与二项式定理(A卷·知识通关练)(1)
解答题-证明题 | 适中(0.65) |
7 . 求证:
2021-11-04更新 | 399次组卷 | 2卷引用:人教B版(2019)选择性必修第二册课本习题习题3-1
20-21高二·全国·课后作业
8 . 杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律,如图是一个11阶杨辉三角:

(1)求第20行中从左到右的第4个数;
(2)求n阶(包括0阶)杨辉三角的所有数的和;
(3)在第2斜列中,前5个数依次为1,3,6,10,15;第3斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m-1斜列中(从右上到左下)前k个数之和,一定等于第m斜列中第k个数.试用含有mk(mkN*)的数字公式表示上述结论,并给予证明.
2021-10-15更新 | 347次组卷 | 3卷引用:6.3 二项式定理(练习)-2022-2023学年高二数学同步精品课堂(人教A版2019选择性必修第三册)
共计 平均难度:一般