组卷网 > 章节选题 > 1.1 回归分析的基本思想及其初步应用
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 4 道试题
1 . 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i12345678910总和
根部横截面积0.040.060.040.080.080.050.050.070.070.060.6
材积量0.250.400.220.540.510.340.360.460.420.403.9
并计算得
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数
2022-06-07更新 | 49360次组卷 | 63卷引用:2022年高考全国乙卷数学(理)真题
解答题-问答题 | 适中(0.65) |
真题 名校
2 . 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xiyi)(i=1,2,…,20),其中xiyi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xiyi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.

附:相关系数r=≈1.414.

2020-07-08更新 | 46639次组卷 | 129卷引用:2020年全国统一高考数学试卷(文科)(新课标Ⅱ)
3 . 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

   

(Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:
≈2.646.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
2016-12-04更新 | 32345次组卷 | 69卷引用:2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)
单选题 | 较易(0.85) |
真题 名校
4 . 在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为(   
A.-1B.0C.D.1
2016-12-01更新 | 6949次组卷 | 39卷引用:2012年全国普通高等学校招生统一考试文科数学(课标卷)
共计 平均难度:一般