组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 19 道试题

1 . 在平面直角坐标系中,已知圆心在轴上的圆经过点,且被轴截得的弦长为.经过坐标原点的直线与圆交于两点.


(1)求圆的方程;
(2)求当满足时对应的直线的方程;
(3)若点,直线与圆的另一个交点为,直线与圆的另一个交点为,分别记直线、直线的斜率为,求证:为定值.
2023-11-30更新 | 540次组卷 | 6卷引用:专题04 圆锥曲线经典题型全归纳(2)
2 . 如图,在平面直角坐标系中,设点是椭圆C上一点,从原点O向圆作两条切线,分别与椭圆C交于点,直线的斜率分别记为.
   
(1)若圆Mx轴相切于椭圆C的右焦点,求圆M的方程;
(2)若,求证:
(3)在(2)的情况下,求的最大值.
2023-09-12更新 | 1181次组卷 | 6卷引用:专题06 椭圆的压轴题(6类题型+过关检测)-【常考压轴题】2023-2024学年高二数学上学期压轴题攻略(人教A版2019选择性必修第一册)
3 . 已知抛物线C,圆M,圆M上的点到抛物线上的点距离最小值为
(1)求圆M的方程;
(2)设P上一点,P的纵坐标不等于.过点P作圆M的两条切线,分别交抛物线C于两个不同的点和点,求证:为定值.
2023-10-24更新 | 425次组卷 | 2卷引用:专题26 直线与圆锥曲线的位置关系5种常见考法归类 - 【考点通关】2023-2024学年高二数学高频考点与解题策略(人教B版2019选择性必修第一册)
4 . 在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线上.
(1)设直线l与圆M交于CD两点,且,求圆M的方程;
(2)设直线与(1)中所求圆M交于EF两点,点P为直线上的动点,直线PEPF与圆M的另一个交点分别为GH,且GH在直线EF两侧,求证:直线GH过定点,并求出定点坐标.
2023-08-17更新 | 905次组卷 | 7卷引用:第二章 直线与圆的方程(压轴题专练)-2023-2024学年高二数学单元速记·巧练(人教A版2019选择性必修第一册)
智能选题,一键自动生成优质试卷~
5 . 已知双曲线上任意一点P(异于顶点)与双曲线两顶点连线的斜率之积为E在双曲线C上,F为双曲线C的右焦点,的最小值为.
(1)求双曲线C的标准方程;
(2)设O为坐标原点,直线l为双曲线C的切线,过F的垂线,垂足为A,求证:A在定圆上.
2023-04-14更新 | 392次组卷 | 2卷引用:专题3-4 双曲线大题综合10种题型归类(讲+练)-【巅峰课堂】2023-2024学年高二数学热点题型归纳与培优练(人教A版2019选择性必修第一册)
6 . 用解析法证明:直径所对的圆周角是直角.
2022-11-09更新 | 199次组卷 | 2卷引用:2.4.1 圆的标准方程【第三课】“上好三节课,做好三套题“高中数学素养晋级之路
7 . 已知圆C经过两点.
(1)如果AB是圆C的直径,证明:无论a取何正实数,圆C恒经过除A外的另一个定点,求出这个定点坐标.
(2)已知点A关于直线的对称点也在圆C上,且过点B的直线l与两坐标轴分别交于不同两点MN,当圆C的面积最小时,试求的最小值.
2022-11-08更新 | 1115次组卷 | 13卷引用:模块三 专题8 圆的方程 B能力卷
8 . 在平面直角坐标系xOy中,过坐标原点O的圆M(圆心M在第一象限)的半径为2,且与y轴正半轴交于点
(1)求圆M的标准方程;
(2)设点B是直线上的动点,BCBD是圆M的两条切线,CD为切点,求四边形BCMD面积的最小值;
(3)若过点M且垂直于y轴的直线与圆M交于点EF,点P为直线上的动点,直线PEPF与圆M的另一个交点分别为GHGHEF不重合),求证:直线GH过定点.
2022-11-23更新 | 251次组卷 | 2卷引用:专题04 圆锥曲线经典题型全归纳(2)
9 . 已知圆过点,且圆心在直线上.
(1)求圆的方程;
(2)设点在圆上运动,点,记为过两点的弦的中点,求的轨迹方程;
(3)在(2)的条件下,若直线与直线交于点,证明:恒为定值.
2023-10-01更新 | 1479次组卷 | 6卷引用:难关必刷03圆的综合问题-【满分全攻略】2023-2024学年高二数学同步讲义全优学案(人教A版2019选择性必修第一册)
2022高二上·全国·专题练习
10 . 已知圆与圆
(1)求证:圆与圆相交;
(2)求两圆公共弦所在直线的方程;
(3)求经过两圆交点,且圆心在直线上的圆的方程.
2022-07-17更新 | 7313次组卷 | 21卷引用:第11讲 第二章 直线和圆的方程 章末总结(2)
共计 平均难度:一般