解题方法
1 . 已知抛物线上一点到其焦点的距离为.
(1)求抛物线的方程;
(2)已知点,动直线与抛物线交于两点,若直线与直线的倾斜角互补,求证:直线过定点.
(1)求抛物线的方程;
(2)已知点,动直线与抛物线交于两点,若直线与直线的倾斜角互补,求证:直线过定点.
您最近一年使用:0次
名校
2 . 已知点在抛物线上,过动点作抛物线的两条切线,切点分别为、,且直线与直线的斜率之积为.
(1)证明:直线过定点;
(2)过、分别作抛物线准线的垂线,垂足分别为、,问:是否存在一点使得、、、四点共圆?若存在,求所有满足条件的点;若不存在,请说明理由.
(1)证明:直线过定点;
(2)过、分别作抛物线准线的垂线,垂足分别为、,问:是否存在一点使得、、、四点共圆?若存在,求所有满足条件的点;若不存在,请说明理由.
您最近一年使用:0次
2022-12-09更新
|
1346次组卷
|
5卷引用:湖北省十一校2023届高三上学期12月第一次联考数学试题
湖北省十一校2023届高三上学期12月第一次联考数学试题山西省运城市景胜中学2023届高三上学期12月月考数学试题(已下线)专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)-2重庆市第一中学2023-2024学年高二上学期期中数学试题(已下线)专题03 圆锥曲线题型全归纳(九大考点)-【寒假自学课】2024年高二数学寒假提升学与练(人教A版2019)
3 . 记以坐标原点为顶点、为焦点的抛物线为,过点的直线与抛物线交于,两点.
(1)已知点的坐标为,求最大时直线的倾斜角;
(2)当的斜率为时,若平行的直线与交于,两点,且与相交于点,证明:点在定直线上.
(1)已知点的坐标为,求最大时直线的倾斜角;
(2)当的斜率为时,若平行的直线与交于,两点,且与相交于点,证明:点在定直线上.
您最近一年使用:0次
名校
解题方法
4 . 已知动圆M过定点,且在y轴上截得的弦长为4,圆心M的轨迹为曲线L.
(1)求L的方程;
(2)已知点,,P是L上的一个动点,设直线PB,PC与L的另一交点分别为E,F,求证:当P点在L上运动时,直线EF恒过一个定点,并求出这个定点的坐标.
(1)求L的方程;
(2)已知点,,P是L上的一个动点,设直线PB,PC与L的另一交点分别为E,F,求证:当P点在L上运动时,直线EF恒过一个定点,并求出这个定点的坐标.
您最近一年使用:0次
2022-07-04更新
|
818次组卷
|
3卷引用:湖北省武汉市武昌区2021-2022学年高二下学期期末数学试题
湖北省武汉市武昌区2021-2022学年高二下学期期末数学试题(已下线)第09讲 高考难点突破一:圆锥曲线的综合问题(定点问题) (精讲)-2湖南省常德市临澧县第一中学2022-2023学年高二下学期5月第四阶段检测数学试题
5 . 已知点在抛物线E:()的准线上,过点M作直线与抛物线E交于A,B两点,斜率为2的直线与抛物线E交于A,C两点.
(1)求抛物线E的标准方程;
(2)(ⅰ)求证:直线过定点;
(ⅱ)记(ⅰ)中的定点为H,设的面积为S,且满足,求直线的斜率的取值范围.
(1)求抛物线E的标准方程;
(2)(ⅰ)求证:直线过定点;
(ⅱ)记(ⅰ)中的定点为H,设的面积为S,且满足,求直线的斜率的取值范围.
您最近一年使用:0次
2022-05-25更新
|
2246次组卷
|
11卷引用:湖北省武汉市2022届高三下学期五月模拟(二)数学试题
湖北省武汉市2022届高三下学期五月模拟(二)数学试题湖北省二十一所重点中学2023届高三上学期第二次联考数学试题江西省丰城中学2022-2023学年高二创新班上学期期中考试数学试题湖北省黄冈市浠水县第一中学2024届高三下学期第四次高考模拟数学试题江苏省南京市第五高级中学2022-2023学年高二上学期1月网课调研数学试题安徽省定远中学2022-2023学年高二下学期7月教学质量检测数学试卷安徽省滁州市定远县育才学校2022-2023学年高二下学期期末考试数学试卷(已下线)专题08 圆锥曲线 第三讲 圆锥曲线中的最值与范围问题(分层练)江西省宜春市宜丰中学创新部2023-2024学年高一下学期6月月考数学试题(已下线)专题9 圆锥曲线中的范围、最值问题(二)【讲】(压轴大全)江苏省海州高级中学2024届高三下学期考前模拟数学试卷
名校
解题方法
6 . 已知曲线的焦点为,曲线上有一点满足.
(1)求抛物线的方程;
(2)过原点作两条相互垂直的直线交曲线于异于原点的两点,直线与轴相交于,试探究轴上存在一点是否存在异于的定点满足恒成立.若存在,请求出点坐标;若不存在,请说明理由.
(1)求抛物线的方程;
(2)过原点作两条相互垂直的直线交曲线于异于原点的两点,直线与轴相交于,试探究轴上存在一点是否存在异于的定点满足恒成立.若存在,请求出点坐标;若不存在,请说明理由.
您最近一年使用:0次
7 . 已知抛物线的方程为,点,过点的直线交抛物线于两点.
(1)求△OAB面积的最小值(为坐标原点);
(2)是否为定值?若是,求出该定值;若不是,说明理由.
(1)求△OAB面积的最小值(为坐标原点);
(2)是否为定值?若是,求出该定值;若不是,说明理由.
您最近一年使用:0次
8 . 已知抛物线C:,经过的直线与抛物线C交于A,B两点.
(1)求的值(其中为坐标原点);
(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值.
(1)求的值(其中为坐标原点);
(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值.
您最近一年使用:0次
2022-02-10更新
|
333次组卷
|
2卷引用:湖北省荆州市沙市中学2021-2022学年高二上学期期末数学试题
解题方法
9 . 已知抛物线的准线与圆相切.
(1)求;
(2)若定点,,M是抛物线上的一个动点,设直线AM,BM与抛物线的另一交点分别为、恒过一个定点.求出这个定点的坐标.
(1)求;
(2)若定点,,M是抛物线上的一个动点,设直线AM,BM与抛物线的另一交点分别为、恒过一个定点.求出这个定点的坐标.
您最近一年使用:0次
名校
解题方法
10 . 设点,动圆P经过点F且和直线相切,记动圆的圆心P的轨迹为曲线W.
(1)求曲线W的方程;
(2)直线与曲线W交于A、B两点,其中O为坐标原点,已知点T的坐标为,记直线TA,TB的斜率分别为,,则是否为定值,若是求出,不是说明理由.
(1)求曲线W的方程;
(2)直线与曲线W交于A、B两点,其中O为坐标原点,已知点T的坐标为,记直线TA,TB的斜率分别为,,则是否为定值,若是求出,不是说明理由.
您最近一年使用:0次