1 . 在平面直角坐标系中,P,Q是抛物线上两点(异于点O),过点P且与C相切的直线l交x轴于点M,且直线与l的斜率乘积为.
(1)求证:直线过定点,并求此定点D的坐标;
(2)过M作l的垂线交椭圆于A,B两点,过D作l的平行线交直线于H,记的面积为S,的面积为T.
①当取最大值时,求点P的纵坐标;
②证明:存在定点G,使为定值.
(1)求证:直线过定点,并求此定点D的坐标;
(2)过M作l的垂线交椭圆于A,B两点,过D作l的平行线交直线于H,记的面积为S,的面积为T.
①当取最大值时,求点P的纵坐标;
②证明:存在定点G,使为定值.
您最近一年使用:0次
2023-05-08更新
|
996次组卷
|
5卷引用:湖南省株洲市第二中学2022届高三下学期第三次月考数学试题
湖南省株洲市第二中学2022届高三下学期第三次月考数学试题山东省烟台市2023届高考适应性练习(一)数学试题山东省枣庄市2023届高三三模数学试题(已下线)高二上学期期中复习【第三章 圆锥曲线的方程】十二大题型归纳(拔尖篇)-2023-2024学年高二数学举一反三系列(人教A版2019选择性必修第一册)(已下线)通关练17 抛物线8考点精练(3)
2 . 已知的一个顶点为抛物线的顶点O,两点都在抛物线上,且.
(1)求证:直线必过一定点;
(2)求面积的最小值.
(1)求证:直线必过一定点;
(2)求面积的最小值.
您最近一年使用:0次
3 . 已知抛物线H:x2=2py(p>0)的焦点为F,过点(0,1)作倾斜角为45°的直线交H于A,B两点,且.
(1)求抛物线H的方程;
(2)设直线l的方程为,且l与H相交于C,D两点,若以CD为直径的圆G恰好经过点F,求圆G的面积.
(1)求抛物线H的方程;
(2)设直线l的方程为,且l与H相交于C,D两点,若以CD为直径的圆G恰好经过点F,求圆G的面积.
您最近一年使用:0次
2023-02-26更新
|
366次组卷
|
2卷引用:湖南省长沙市雅礼中学2022-2023学年高三上学期月考(四)数学试题
名校
解题方法
4 . 已知抛物线上一点到焦点的距离为4.
(1)求抛物线的标准方程;
(2)过焦点的直线与抛物线交于不同的两点,,为坐标原点,设直线,的斜率分别为,,求证:为定值.
(1)求抛物线的标准方程;
(2)过焦点的直线与抛物线交于不同的两点,,为坐标原点,设直线,的斜率分别为,,求证:为定值.
您最近一年使用:0次
2022-12-20更新
|
617次组卷
|
5卷引用:湖南省郴州市嘉禾县第六中学2022-2023学年高二上学期第三次月考数学试题
解题方法
5 . 若抛物线:上的一点到它的焦点的距离为.
(1)求C的标准方程;
(2)若过点的直线与抛物线C相交于A,B两点.求证:为定值.
(1)求C的标准方程;
(2)若过点的直线与抛物线C相交于A,B两点.求证:为定值.
您最近一年使用:0次
解题方法
6 . 已知抛物线,过点作直线与交于,两点,当该直线垂直于轴时,的面积为2,其中为坐标原点.
(1)求的方程.
(2)若的一条弦经过的焦点,且直线与直线平行,试问是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
(1)求的方程.
(2)若的一条弦经过的焦点,且直线与直线平行,试问是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
您最近一年使用:0次
2022-11-26更新
|
626次组卷
|
8卷引用:湖南省部分学校2022-2023学年高三上学期12月联考数学试题
解题方法
7 . 在直角坐标系中,已知抛物线,为直线上的动点,过点作抛物线的两条切线,切点分别为,当在轴上时,.
(1)求抛物线的方程;
(2)求点到直线距离的最大值.
(1)求抛物线的方程;
(2)求点到直线距离的最大值.
您最近一年使用:0次
名校
解题方法
8 . 已知抛物线与直线交于M,N两点,且线段MN的中点为.
(1)求抛物线C的方程;
(2)过点P作直线m交抛物线于点A,B,是否存在定点M,使得以弦AB为直径的圆恒过点M.若存在,请求出点M坐标;若不存在,请说明理由.
(1)求抛物线C的方程;
(2)过点P作直线m交抛物线于点A,B,是否存在定点M,使得以弦AB为直径的圆恒过点M.若存在,请求出点M坐标;若不存在,请说明理由.
您最近一年使用:0次
2022-10-12更新
|
644次组卷
|
3卷引用:湖南省长沙市周南中学2022-2023学年高三上学期第二次月考数学试题
名校
9 . 在平面直角坐标系中,抛物线与轴分别相交于两点(点在点的左侧),与轴相交于点,设抛物线的对称轴与轴相交于点,且.
(1)求的值;
(2)将抛物线向上平移3个单位,得到抛物线,设点是抛物线上在第一象限内不同的两点,射线分别交直线于点,设的横坐标分别为,且,求证:直线经过定点.
(1)求的值;
(2)将抛物线向上平移3个单位,得到抛物线,设点是抛物线上在第一象限内不同的两点,射线分别交直线于点,设的横坐标分别为,且,求证:直线经过定点.
您最近一年使用:0次
10 . 已知抛物线C:(),直线交抛物线C于A,B两点,且三角形OAB的面积为(O为坐标原点).
(1)求实数p的值;
(2)过点D(2,0)作直线L交抛物线C于P,Q两点,点P关于x轴的对称点为P'.证明:直线P'Q经过定点,并求出定点坐标.
(1)求实数p的值;
(2)过点D(2,0)作直线L交抛物线C于P,Q两点,点P关于x轴的对称点为P'.证明:直线P'Q经过定点,并求出定点坐标.
您最近一年使用:0次
2022-07-17更新
|
916次组卷
|
3卷引用:湖南省长沙市第一中学2023届高三上学期入学摸底考试数学试题