解题方法
1 . 已知动点M到定点的距离比点M到定直线的距离小1.
(1)求点M的轨迹C的方程.
(2)过点F作两条互相垂直的直线和,分别交曲线C于点A,B和K,N.设线段AB,KN的中点分别为P,Q,求证:直线恒过一个定点.
(1)求点M的轨迹C的方程.
(2)过点F作两条互相垂直的直线和,分别交曲线C于点A,B和K,N.设线段AB,KN的中点分别为P,Q,求证:直线恒过一个定点.
您最近一年使用:0次
2 . 平面直角坐标系中,过点的动直线l与抛物线交于A,B两点且.
(1)求t的值;
(2)若点M在x轴上且,在x轴上是否存在确定的点P,使得当动直线l不与x轴垂直时,恒有.若存在,请求出点P的坐标:若不存在,请说明理由.
(1)求t的值;
(2)若点M在x轴上且,在x轴上是否存在确定的点P,使得当动直线l不与x轴垂直时,恒有.若存在,请求出点P的坐标:若不存在,请说明理由.
您最近一年使用:0次
3 . 若抛物线的焦点为,点在抛物线上,且.
(1)求抛物线的方程;
(2)过点的直线交抛物线于两点,点A关于轴的对称点是,证明:三点共线.
您最近一年使用:0次
解题方法
4 . 已知抛物线,是上一点.
(1)求证:直线与相切;
(2)设过点的直线与交于,两点,分别过,作的切线,,与相交于点,求证:点在定直线上.
(1)求证:直线与相切;
(2)设过点的直线与交于,两点,分别过,作的切线,,与相交于点,求证:点在定直线上.
您最近一年使用:0次
解题方法
5 . 已知抛物线的焦点为,且点关于直线的对称点恰好在上.
(1)求抛物线的方程;
(2)斜率为的直线与抛物线交于两点,且,过点且与直线垂直的直线交轴于点,求证:为定值,并求出该定值.
(1)求抛物线的方程;
(2)斜率为的直线与抛物线交于两点,且,过点且与直线垂直的直线交轴于点,求证:为定值,并求出该定值.
您最近一年使用:0次
名校
解题方法
6 . 已知抛物线与交于两点,其中点在第一象限,且,抛物线的准线与轴交于点.
(1)求以线段为直径的圆的方程;
(2)若在抛物线上,且,探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.
(1)求以线段为直径的圆的方程;
(2)若在抛物线上,且,探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.
您最近一年使用:0次
2024-02-25更新
|
645次组卷
|
2卷引用:1号卷·A10联盟2022届全国高考第一轮总复习试卷数学(文科)试题(十九)
解题方法
7 . 已知为抛物线的焦点,直线交抛物线于,两点,,为的中点,且.
(1)求抛物线的方程;
(2)经过点(12,8)的两条直线的斜率分别为,且,若直线交抛物线于点,直线交抛物线于点,线段和的中点分别为,.试判断直线是否经过定点,若经过求出定点;若不经过,说明理由.
您最近一年使用:0次
2024-02-21更新
|
110次组卷
|
2卷引用:中原名校2022年高三上学期第四次精英联赛理科数学试题
8 . 若抛物线的焦点为,过点的直线交抛物线于.
(1)当平行于轴时,,求;
(2)当时,现有以下两个结论:①;②.请选择其中一个结论证明.
(1)当平行于轴时,,求;
(2)当时,现有以下两个结论:①;②.请选择其中一个结论证明.
您最近一年使用:0次
名校
解题方法
9 . 已知焦点为的抛物线:()上一点到的距离是4.
(1)求抛物线的方程.
(2)若不过原点的直线与抛物线交于,两点(,位于轴两侧),的准线与轴交于点,直线,与分别交于点,,若,证明:直线过定点.
(1)求抛物线的方程.
(2)若不过原点的直线与抛物线交于,两点(,位于轴两侧),的准线与轴交于点,直线,与分别交于点,,若,证明:直线过定点.
您最近一年使用:0次
2024-01-10更新
|
553次组卷
|
2卷引用:陕西省西安博爱国际学校2021-2022学年高二上学期期末理科数学试题
10 . 已知抛物线的焦点为,点为坐标原点,线段的垂直平分线交抛物线于两点,.
(1)求抛物线的标准方程;
(2)点是抛物线上异于点的两个动点,且,求证:直线恒过一定点.
(1)求抛物线的标准方程;
(2)点是抛物线上异于点的两个动点,且,求证:直线恒过一定点.
您最近一年使用:0次