组卷网 > 知识点选题 > 独立性检验解决实际问题
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 11 道试题

1 . 某医科大学科研部门为研究退休人员是否患痴呆症与上网的关系,随机调查了市100位退休人员,统计数据如下表所示:

患痴呆症

不患痴呆症

合计

上网

16

32

48

不上网

34

18

52

合计

50

50

100


(1)依据的独立性检验,能否认为该市退休人员是否患痴呆症与上网之间有关联?
(2)从该市退休人员中任取一位,记事件A为“此人患痴呆症”,为“此人上网”,则为“此人不患痴呆症”,定义事件A的强度,在事件发生的条件下A的强度

(i)证明:

(ⅱ)利用抽样的样本数据,估计的值.

附:,其中

0.050

0.010

0.001

3.841

6.635

10.828

2023-11-20更新 | 801次组卷 | 5卷引用:辽宁省沈阳市第一二〇中学2023-2024学年高二上学期第四次质量监测数学试题
2 . 第19届亚运会将于2023年9月23日在杭州拉开帷幕,为了更好地迎接亚运会,杭州市政府大举加强了城市交通基础设施的建设.至2023年地铁运行的里程数达到516公里,排位全国第六.同时,一张总长464公里、“四纵五横”为骨架、通达“东西南北中”十城区的快速路网也顺利完工准备接待世界各地的来宾.现杭州公共出行的主流方式为地铁、公交、打车、共享单车这四种,基本可以覆盖大众的出行需求.
(1)一个兴趣小组发现,来自不同的城市的游客选择出行的习惯会有很大差异,为了验证这一猜想该小组进行了研究.请完成下列列联表,并根据小概率值的独立性检验,分析城市规模是否与出行偏好地铁有关?(精确到0.001)
单位:人

出行方式

国际大都市

中小型城市

合计

偏好地铁

20

100

偏好其他

60

合计

60

(2)国际友人David来杭游玩,每日的行程分成段,为了更好的体验文化,相邻两段的出行方式不能相同,且选择地铁、公交、打车、共享单车的概率是等可能的.已知他每日从酒店出行的方式一定是从地铁开始,记第段行程上David坐地铁的概率为,易知
①试证明为等比数列;
②设第次David选择共享单车的概率为,比较的大小.
附:

0.050

0.010

0.001

3.841

6.635

10.828

2023-06-22更新 | 722次组卷 | 4卷引用:浙江省杭州市2022-2023学年高二下学期期末数学试题
3 . 某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的,女性患Ⅰ型病的人数占女性病人的
(1)若依据小概率值的独立性检验,认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?
(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为,每人每次接种花费元,每个周期至多接种3次,第一个周期连续2次出现抗体测终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期:第二接种周期连续2次出现抗体则终止试验,否则依次接种至至试验结束:乙团队研发的药物每次接种后产生抗体概率为,每人每次花费元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期、假设两个研发团队每次接种后产生抗体与否均相互独立.当时,从两个团队试验的平均花费考虑,试证明该公司选择乙团队进行药品研发的决策是正确的.
参考公式:(其中为样本容量)
参考数据:

α

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.897

10.828

2023-08-01更新 | 197次组卷 | 1卷引用:福建省厦门第一中学2022-2023学年高二下学期期末考试数学试题
4 . 为了考查一种新疫苗预防某一疾病的效果,研究人员对一地区某种动物进行试验,从该试验群中随机抽查了50只,得到如下的样本数据(单位:只):

发病

没发病

合计

接种疫苗

8

16

24

没接种疫苗

17

9

26

合计

25

25

50

(1)能否有95%的把握认为接种该疫苗与预防该疾病有关?
(2)从该地区此动物群中任取一只,记表示此动物发病,表示此动物没发病,表示此动物接种疫苗,定义事件的优势,在事件发生的条件下的优势.
(ⅰ)证明:
(ⅱ)利用抽样的样本数据,给出的估计值,并给出的估计值.附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

2023-07-16更新 | 257次组卷 | 3卷引用:福建省莆田市2022-2023学年高二下学期期末质量监测数学试题
智能选题,一键自动生成优质试卷~
5 . 近年来,绿色环保和可持续设计受到社会的广泛关注,成为了一种日益普及的生活理念和方式,可持续和绿色能源是我们这个时代的呼唤,也是我们每一个人的责任.某环保可持续性食用产品做到了真正的“零浪费”设计,其外包装材质是蜂蜡.食用完之后,蜂蜡罐可回收用于蜂房的再建造.为了研究蜜蜂进入不同颜色的蜂蜡罐与蜜蜂种类的关系,研究团队收集了黄、褐两种颜色的蜂蜡罐,对两个品种的蜜蜂各120只进行研究,得到如下数据:
黄色蜂蜡罐褐色蜂蜡罐
品种蜜蜂8040
品种蜜蜂10020
(1)试根据小概率值的独立性检验,分析认为蜜蜂进入不同颜色的蜂蜡罐与蜜蜂种类有关联?
(2)假设要计算某事件的概率,常用的一个方法就是找一个与事件有关的事件,利用公式:求解.现从装有品种蜜蜂和品种蜜蜂的蜂蜡罐中不放回地任意抽取两只,令第一次抽到品种蜜蜂为事件,第二次抽到品种蜜蜂为事件.
(ⅰ)证明:
(ⅱ)研究发现,①品种蜜蜂飞入黄色蜂蜡罐概率为,被抽到的概率为品种蜜蜂飞入褐色蜂蜡罐概率为,被抽到的概率为;②品种蜜蜂飞入黄色蜂蜡罐概率为,被抽到的概率为品种蜜蜂飞入褐色蜂蜡罐概率为,被抽到的概率为.请从两个品种蜜蜂中选择一种,求该品种蜜蜂被抽到的概率.
2023-06-17更新 | 196次组卷 | 1卷引用:河北省尚义县第一中学2022-2023学年高二下学期6月月考数学试题
6 . 2022年国际篮联女篮世界杯在澳大利亚悉尼落下帷幕,中国女篮团结一心、顽强拼搏获得亚军. 这届世界杯,中国女篮为国人留下了许多精彩瞬间和美好回忆,尤其是半决赛绝杀东道主澳大利亚堪称经典一幕. 为了了解喜爱篮球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下2×2列联表.
合计
喜爱3040
不喜爱4060
合计50100
(1)将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱篮球运动与性别有关?
(2)从观众中任选一人,A表示事件“选中的观众为男性”,B表示事件“不喜欢篮球运动”. 的比值是性别对运动热爱程度的一项度量指标,记该指标为R.
①证明:
②利用男观众的数据统计,给出的估计值,并求出R的估计值.
附:,其中.
0.0100.0050.001
6.6357.87910.828
7 . 为了研究高三年级学生的性别和身高是否大于170cm的关联性,调查了某中学所有高三年级的学生,整理得到如下列联表:

性别

身高

合计

低于170cm

高于170cm

14

7

21

8

11

19

合计

22

18

40

(1)依据α=0.05的独立性检验,能否认为该中学高三年级学生的性别与身高有关联?
附:n=a+b+c+d

α

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(2)考虑以Ω为样本空间的古典概型,设XY为定义在Ω上,取值于的成对分类变量,已知都是互为对立事件.令为零假设或原假设.证明:若零假设成立,则独立.
8 . 李医生研究当地成年男性患糖尿病与经常喝酒的关系,他对盲抽的60名成年男性作了调查,得到如下表统计数据,还知道被调查人中随机抽一人患糖尿病的概率为.

经常喝酒

不经常喝酒

患糖尿病

4

没患糖尿病

6

(1)写出本研究的列联表,依据小概率值的独立性检验,判断当地成年男性患糖尿病是否和喝酒习惯有关联?
(2)从该地任选一人,表示事件“选到的人经常喝酒”,表示事件“选到的人患糖尿病”,把的比值叫“常喝酒和患糖尿病的关联指数”,记为.
(ⅰ)利用该调查数据求的值;
(ⅱ)证明:.
参考公式及数表:

0.15

0.1

0.05

0.01

0.005

0.001

2.072

2.706

3.841

6.635

7.879

10.828

2023-04-14更新 | 1025次组卷 | 3卷引用:成对数据的统计分析章末测试卷(一)-【帮课堂】2022-2023学年高二数学同步精品讲义(人教A版2019选择性必修第三册)

9 . 2022年11月20日,卡塔尔足球世界杯正式开幕,世界杯上的中国元素随处可见.从体育场建设到电力保障,从赛场内的裁判到赛场外的吉祥物都是中国制造,为卡塔尔世界杯提供了强有力的支持.国内也再次掀起足球热潮.某地足球协会组建球队参加业余比赛,该足球队教练组为了考查球员甲对球队的贡献,作出如下数据统计(甲参加过的比赛均分出了输赢):

球队输球

球队赢球

总计

甲参加

2

30

32

甲未参加

8

10

18

总计

10

40

50


(1)根据小概率值的独立性检验,能否认为该球队赢球与甲球员参赛有关联;
(2)从该球队中任选一人,A表示事件“选中的球员参赛”,B表示事件“球队输球”.的比值是选中的球员参赛对球队贡献程度的一项度量指标,记该指标为R

①证明:

②利用球员甲数据统计,给出的估计值,并求出R的估计值.

附:

参考数据:

a

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

2023-04-06更新 | 3383次组卷 | 14卷引用:湖南省长沙市望城区第一中学2022-2023学年高二下学期期末模拟数学试题
10 . 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:

不够良好

良好

病例组

40

60

对照组

10

90

(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R
(ⅰ)证明:
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.

0.050

0.010

0.001

k

3.841

6.635

10.828

2022-06-07更新 | 55969次组卷 | 59卷引用:第八章 成对数据的统计分析 (单元测)
共计 平均难度:一般