组卷网 > 章节选题 > 必修1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 21 道试题
1 . (1)计算:
(2)解不等式组:
2022-09-13更新 | 175次组卷 | 1卷引用:四川省南充市仪陇宏德中学2022-2023学年高一上学期开学考试数学试题
2 . 成书于约两千多年前的我国古代数学典籍《九章算术》中记载了通过加减消元求解元一次方程组的算法,直到拥有超强算力计算机的今天,这仍然是一种效率极高的算法.按照这种算法,求解元一次方程组大约需要对实系数进行为给定常数)次计算.1949年,经济学家莱昂提夫为研究“投入产出模型”(该工作后来获得1973年诺贝尔经济学奖),利用当时的计算机求解一个42元一次方程组,花了约56机时.事实上,他的原始模型包含500个未知数,受限于机器算力而不得不进行化简以减少未知数.如果不进行化简,根据未知数个数估计所需机时,结果最接近于(       
A.机时B.机时C.机时D.机时
解答题-计算题 | 容易(0.94) |
名校
3 . (1)计算:
(2)先化简,后求值:,其中
2022-12-28更新 | 107次组卷 | 1卷引用:江苏省盐城市射阳中学2022-2023学年高一上学期入学数学试题
4 . 设,对关于的方程组的解的说法正确的是(       
A.对任意实数,该方程组的解集都是单元素集;
B.至少存在一个实数,使得该方程组的解集为空集;
C.至少存在一个实数,使得该方程组的解集为无限集;
D.对任意实数,该方程组的解集都不是空集.
2021-09-24更新 | 812次组卷 | 5卷引用:专题09 集合的概念-2022年暑假初三升高一数学衔接知识自学讲义(人教A版2019)
5 . 观察实际情景,提出并分析问题
(1)实际情境
企业的生产经营活动,最终以利润论成败,利润的本质是企业盈利的表现形式,是全体职工的劳动成绩,企业为市场生产优质商品而得到利润,注意利润是对全部成本而言的.一个企业有利润,意味着该企业有一定的盈利能力,意味着企业具有较强的获取现金的能力,影响利润的因素较复杂,如果排除一些较为复杂的因素,我们是否可以预测利润,为企业的发展献计献策?
(2)提出问题
为长期获得可观的利润,应该如何制定企业的发展策略?
(3)分析问题
某新型企业为获得更大利润,须不断加大投资,企业的发展必然受到利润率的制约,若预计年利润低于10%时,则该企业就考虑转型,我们可以根据企业成本与利润的数据,通过数学模型达到转型预测的目的.
2. 收集数据
下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:
年份20152016201720182019
投资成本3591733
年利润1234.15.2
①选择一个恰当的函数模型来描述xy之间的关系,并求出其解析式;
②试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.
3.分析数据
先根据表中数据,刻画出散点图,根据散点图的特征选择合适的函数.利用几何画板等工具,得到的散点图如下图:

根据散点图的形式,结合我们所学的函数图像,发现模型的不确定.
4.建立模型
(1)幂函数型
根据散点图的形式,可假设,且),
,化简得到
设,利用几何画板、图形计算器等可求得此方程的解为,不合题意舍.

(2)对数函数模型
,且),
,解得,∴.
(3)指数函数模型

,故

但当时,,故指数函数模型不合适.
结合以上分析,我们发现对数函数函数模型较为合适.
5.检验模型
我们用余下的数据进行检验,
时,;当,这两组数据与实际的数据比较接近,故选择对数函数模型.
6.问题解决
由题知,解得.,
∵年利润,∴该企业要考虑转型.
7.问题拓展
在上述模型的建立的过程中,我们根据散点图选择了不同的函数模型,然后利用前3个点求出对应的函数形式,否定了其中两个不合的函数模型,那么请同学思考一下是否有更合适的模型?
2022-07-27更新 | 393次组卷 | 1卷引用:数学建模-对数函数模型的应用
6 . 已知函数为常数)
(1)定义:区间的长度为,若,问是否存在区间,使得时,的值域为,若存在,求出此区间长度的最大值;
(2)解关于的不等式:
(3)求函数上的最小值.
2022-11-01更新 | 336次组卷 | 1卷引用:山西大学附属中学校2022-2023学年高一上学期10月月考数学试题
7 . 记,其中,例如
(1)若,求的取值集合;
(2)解关于的不等式
(3)已知对任意正整数,实数满足,记,其中n为正整数,若,求的取值集合.
2022-09-06更新 | 457次组卷 | 4卷引用:期中模拟预测卷02(测试范围:前三章)-2022-2023学年高一数学上学期期中期末考点大串讲(沪教版2020必修第一册)
8 . 在下列两个条件中任选一个补充在下面的问题中,并回答问题.
b为自变量xc为关于b(即x)的函数,记为y
c为自变量xb为关于c(即x)的函数,记为y
问题:对于等式abca>0,a≠1),若视a为常数,______,且函数yfx)的图象经过
(1)求的解析式,并写出的单调区间;
(2)解关于x的不等式
9 . 研究函数首先要研究其性质和图象,然后利用性质和图象来解决问题如探究函数
(1)探究性质
①求的定义域并判断奇偶性;
②讨论的单调性;
(2)解关于x的不等式:
2022-01-26更新 | 191次组卷 | 1卷引用:湖北省鄂州市2021-2022学年高一上学期期末数学试题
10 . 幂函数是偶函数,
(1)求的值,写出解析式;
(2)
①判断的奇偶性,并用定义证明;
②指出的单调递减区间(无需证明),并解关于实数的不等式
2022-01-22更新 | 394次组卷 | 2卷引用:辽宁省营口市2021-2022学年高一上学期期末数学试题
共计 平均难度:一般