组卷网 > 章节选题 > 选修2-3
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 5 道试题
1 . 调味品品评师的重要工作是对各种品牌的调味品进行品尝,分析、鉴定,调配、研发,周而复始、反复对比.对调味品品评师考核测试的一种常用方法如下:拿出n瓶外观相同但品质不同的调味品让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶调味品,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设,分别以表示第一次排序时被排为1,2,3,4的四种调味品在第二次排序时的序号,并令,则X是对两次排序的偏离程度的一种描述.(如第二次排序时的序号为1,3,2,4,则).
(1)写出X的所有可能值构成的集合;
(2)假设的排列等可能地为1,2,3,4的各种排列,求X的数学期望;
(3)某调味品品评师在相继进行的三轮测试中,都有.
(i)试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ⅱ)请你判断该调味品品评师的品味鉴别能力如何?并说明理由.
2020-04-12更新 | 387次组卷 | 4卷引用:2020届河北省石家庄市第二中学高三一模教学质量检测数学(理)试题
2 . 某药物研究所为了研究小白鼠的身长与体重的关系,随机抽测了20只小白鼠,得到如下数据:
序号12345678910
身长113889196977991878885
体重39313533343642394039
序号11121314151617181920
身长899887941039985908291
体重41434043373238413742
(1)若从序号为的10只小白鼠中任取2只,其中序号是5的倍数的小白鼠个数为,求的分布列与数学期望;
(2)请根据序号为5的倍数的几组数据,求出关于的经验回归方程(精确到0.01).
附:经验回归方程的斜率和截距的最小二乘估计公式分别为.
2024-07-07更新 | 51次组卷 | 1卷引用:河北省沧州市2023-2024学年高二下学期期末教学质量监测数学试题
3 . 某民营学校为增强实力与影响力,大力招揽名师、建设校园硬件设施,近5年该校招生人数的数据如下表:

年份序号x

1

2

3

4

5

招生人数y/千人

0.8

1

1.3

1.7

2.2

(1)由表中数据可看出,可用线性回归模型拟合的关系,请用相关系数加以证明;
(2)求关于的回归直线方程,并预测当年份序号为7时该校的招生人数.
参考数据:
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为
2024-03-21更新 | 1046次组卷 | 6卷引用:河北省邯郸市2024届高三第三次调研考试考试数学试题
4 . 在科技飞速发展的今天,人工智能领域迎来革命性的突破.类似于OpenAI的人工智能大模型不仅具有高度智能化、自主化和自适应的特点,它们的学习能力和信息储存能力也远远超越人类,更是拥有强大的语音识别和语言理解能力.某机构分别用两种人工智能大模型进行对比研究,检验这两种大模型在答题时哪种更可靠,从某知识领域随机选取180个问题进行分组回答,其中人工智能大模型回答100个问题,有90个正确;人工智能大模型回答剩下的80个问题,有65个正确.
(1)完成下列列联表,并根据小概率值独立性检验,能否判断人工智能大模型的选择和回答正确有关?
回答正确回答错误合计
人工智能大模型
人工智能大模型
合计
(2)将频率视为概率,用人工智能大模型回答该知识领域的3道题目,且各题回答正确与否,相互之间没有影响,设回答题目正确的个数为,求的分布列和数学期望.
参考公式及参考数据:.

0.15

0.10

0.05

0.010

2.072

2.706

3.841

6.635

2024-05-03更新 | 978次组卷 | 6卷引用:河北省邢台市南宫中学2023-2024学年高三高考考前定心卷2数学试题
5 . “开门大吉”是某电视台推出的游戏益智节目.选手面对1﹣4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加),但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示.

每扇门对应的梦想基金:(单位:元)

第一扇门

第二扇门

第三扇门

第四扇门

1000

2000

3000

5000


(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)

P(K2k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828


(2)若某选手能正确回答第一、二、三、四扇门的概率分别为正确回答一个问题后,选择继续回答下一个问题的概率是,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望(精确到0.01).(参考公式
共计 平均难度:一般