组卷网 > 章节选题 > 2.3.2 离散型随机变量的方差
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 48 道试题
1 . 某公司全年圆满完成预定的生产任务,为答谢各位员工一年来的锐意进取和辛勤努力,公司决定在联欢晚会后,拟通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有4种面值的奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.
(1)若箱子中所装的4种面值的奖券中有1张面值为80元,其余3张均为40元,试比较员工获得80元奖励额与获得120元奖励额的概率的大小;
(2)公司对奖励总额的预算是6万元,预定箱子中所装的4种面值的奖券有两种方案:第一方案是2张面值20元和2张面值100元;第二方案是2张面值40元和2张面值80元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.
2022-02-27更新 | 2368次组卷 | 10卷引用:山东省大教育联盟学校2021-2022学年高三下学期收心考试(开学考试)数学试题
2 . 某短视频软件经过几年的快速发展,深受人们的喜爱,该软件除了有娱乐属性外,也可通过平台推送广告.某公司为了宣传新产品,现有以下两种宣传方案:
方案一:投放该平台广告,据市场调研,其收益X分别为0元,20万元,40万元,且,期望
方案二:投放传统广告,据市场调研,其收益Y分别为10万元,20万元,30万元,其概率依次为
(1)请写出方案一的分布列,并求方差
(2)请你根据所学的统计知识给出建议,该公司宣传应该投放哪种广告?并说明你的理由.
2024-01-07更新 | 727次组卷 | 7卷引用:专题02 结论探索型【练】【北京版】
3 . 某公司举办公司员工联欢晩会,为活跃气氛,计划举行摸奖活动,有两种方案:
方案一:不放回从装有个红球和个白球的箱子中随机摸出个球,每摸出一红球奖励元:
方案二:有放回从装有个红球和个白球的箱子中随机摸出个球,每摸出一红球奖励元,分别用随机变量表示某员工按方案一和方案二抽奖的获奖金额.
(1)求随机变量的分布列和数学期望:
(2)用统计知识分析,为使公司员工获奖金额相对均衡,应选择哪种方案?请说明理由.
2023-07-09更新 | 453次组卷 | 6卷引用:模块二 专题3 概率与统计中决策问题
4 . 为切实做好新冠疫情防控工作,有效、及时地控制和消除新冠肺炎的危害,增加学生对新冠肺炎预防知识的了解,某校举办了一次“新冠疫情”知识竞赛.竞赛分个人赛和团体赛两种.个人赛参赛方式为:组委会采取电脑出题的方式,从题库中随机出10道题,编号为,电脑依次出题,参赛选手按规则作答,每答对一道题得10分,答错得0分.团体赛以班级为单位,各班参赛人数必须为3的倍数,且不少于18人,团体赛分预赛和决赛两个阶段,其中预赛阶段各班可从以下两种参赛方案中任选一种参赛:
方案一:将班级选派的名参赛选手每3人一组,分成组,电脑随机分配给同一组的3名选手一道相同的试题,3人均独立答题,若这3人中至少有2人回答正确,则该小组顺利出线;若这个小组都顺利出线,则该班级晋级决赛.
方案二:将班级选派的名参赛选手每人一组,分成3组,电脑随机分配给同一组的名选手一道相同的试题,每人均独立答题,若这个人都回答正确,则该小组顺利出线;若这3个小组中至少有2个小组顺利出线,则该班级晋级决赛.
(1)郭靖同学参加了个人赛,已知郭靖同学答对题库中每道题的概率均为,每次作答结果相互独立,且他不会主动放弃任何一次作答机会,求郭靖同学得分的数学期望与方差;
(2)在团体赛预赛中,假设A班每位参赛选手答对试题的概率均为常数A班为使晋级团体赛决赛的可能性更大,应选择哪种参赛方式?请说明理由.
2023-06-02更新 | 1634次组卷 | 5卷引用:河北省2023届高三模拟(六)数学试题
智能选题,一键自动生成优质试卷~
5 . 某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:

等级

标准果

优质果

精品果

礼品果

个数

10

30

40

20

(1)若将频率视为概率,从这100个水果中有放回地随机抽取5个,求恰好有2个水果是礼品果的概率(结果用分数表示);
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,
方案1:不分类卖出,单价为21元
方案2:分类卖出,分类后的水果售价如下:

等级

标准果

优质果

精品果

礼品果

售价(元

16

18

22

24

从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取的是精品果的数量,求的分布列及方差.
2022-11-22更新 | 752次组卷 | 4卷引用:上海市建平中学2023届高三上学期9月月考数学试题
6 . 小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在时,日平均派送量为单.
若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:
7 . 高二(16)班参加青华中学红五月节目:猜歌名,班级只有一个名额,结合平时观察积累,闫某峻,贾某轩两名学生进入最后选拔,申老师为此设计了如下选拔方案:挑选8首歌进行测试,在这8首歌曲中,闫某峻能正确说出其中的6首歌名,贾某轩能正确说出每首歌名的概率均为,假设闫某峻、贾某轩两名学生说出每首歌名都相互独立、互不影响,现闫某峻、贾某轩从这8首歌中分别随机抽取4首进行竞猜
(1)求闫某峻、贾某轩共答对3首歌名的概率;
(2)从数学期望和方差的角度分析,应选拔哪个学生代表高二(16)班参加红五月活动?
2024-07-24更新 | 61次组卷 | 2卷引用:第三章 随机变量及其分布列 专题四 随机变量分布列、期望、方差的应用 微点5 概率分布在生活、生产实践中的应用综合训练【培优版】
8 . 开展中小学生课后服务,是促进学生健康成长、帮助家长解决接送学生困难的重要举措 是进一步增强教育服务能力、使人民群众具有更多获得感和幸福感的民生工程. 某校为 确保学生课后服务工作顺利开展,制定了两套工作方案,为了解学生对这两个方案的支 持情况,对学生进行简单随机抽样,获得数据如表:

支持方案一

24

16

支持方案二

25

35

假设用频率估计概率,且所有学生对活动方案是否支 持相互独立.
(1)从该校支持方案一和支持方案二的学生中各随机抽取1人,设为抽出两人中女生的个数,求的分布列与数学期望;
(2)在(1)中表示抽出两人中男生的个数,试判断方差的大小.
2024-06-08更新 | 197次组卷 | 3卷引用:湖南省长沙市周南中学2024届高三下学期第三次模拟考试数学试卷
9 . 某校设计了一个实验学科的实验考查方案;考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成两题便可通过,已知6道备选题中甲生有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,求:
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试用统计知识分析比较两考生的实验操作能力.
2024-08-30更新 | 444次组卷 | 4卷引用:北京师范大学附属中学2023-2024学年高三上学期期中数学试题
10 . 某校举行知识竞赛,最后一个名额要在AB两名同学中产生,测试方案如下:AB两名学生各自从给定的4个问题中随机抽取3个问题作答,在这4个问题中,已知A能正确作答其中的3个,B能正确作答每个问题的概率都是AB两名同学作答问题相互独立.
(1)求AB两名同学恰好共答对2个问题的概率;
(2)若让你投票决定参赛选手,你会选择哪名学生,简要说明理由.
2024-03-08更新 | 819次组卷 | 1卷引用:云南省昆明市第一中学2024届高三第七次高考仿真模拟数学试题
共计 平均难度:一般