名校
解题方法
1 . 新冠疫情不断反弹,各大商超多措并举确保市民生活货品不断档,超市员工加班加点工作.某大型超市为答谢各位员工一年来的锐意进取和辛勤努力,拟在年会后,通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有5种面值奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.
(1)若箱子中所装的5种面值的奖券中有2张面值为100元,其余3张均为50元,试比较员工获得100元奖励额与获得150元奖励额的概率的大小;
(2)公司对奖励总额的预算是7万元,预定箱子中所装的5种面值的奖券有两种方案:第一方案是3张面值30元和2张面值130元;第二方案是3张面值50元和2张面值100元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.
(1)若箱子中所装的5种面值的奖券中有2张面值为100元,其余3张均为50元,试比较员工获得100元奖励额与获得150元奖励额的概率的大小;
(2)公司对奖励总额的预算是7万元,预定箱子中所装的5种面值的奖券有两种方案:第一方案是3张面值30元和2张面值130元;第二方案是3张面值50元和2张面值100元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.
您最近一年使用:0次
2023-04-14更新
|
721次组卷
|
9卷引用:山东省德州市2022-2023学年高二上学期期末数学试题
山东省德州市2022-2023学年高二上学期期末数学试题(已下线)模块一 专题2 概率统计 (人教B)(已下线)模块三 专题5 概率与统计--拔高能力练(人教B版)福建省宁德市寿宁县第一中学2022-2023学年高二下学期第二阶段考试(5月)数学试题江苏省连云港高级中学2022-2023学年高二下学期期中数学试题(已下线)拓展二:离散型随机变量的分布列与数字特征11种常见考法归类(2)(已下线)第10讲 离散型随机变量的均值与方差-【寒假预科讲义】2024年高二数学寒假精品课(人教A版2019)(已下线)专题03 条件概率与全概率公式(3)(已下线)高二下学期期末复习解答题压轴题二十二大题型专练(5)
2 . 某公司举办公司员工联欢晩会,为活跃气氛,计划举行摸奖活动,有两种方案:
方案一:不放回从装有个红球和个白球的箱子中随机摸出个球,每摸出一红球奖励元:
方案二:有放回从装有个红球和个白球的箱子中随机摸出个球,每摸出一红球奖励元,分别用随机变量、表示某员工按方案一和方案二抽奖的获奖金额.
(1)求随机变量的分布列和数学期望:
(2)用统计知识分析,为使公司员工获奖金额相对均衡,应选择哪种方案?请说明理由.
方案一:不放回从装有个红球和个白球的箱子中随机摸出个球,每摸出一红球奖励元:
方案二:有放回从装有个红球和个白球的箱子中随机摸出个球,每摸出一红球奖励元,分别用随机变量、表示某员工按方案一和方案二抽奖的获奖金额.
(1)求随机变量的分布列和数学期望:
(2)用统计知识分析,为使公司员工获奖金额相对均衡,应选择哪种方案?请说明理由.
您最近一年使用:0次
2023-07-09更新
|
453次组卷
|
6卷引用:福建省南平市2022-2023学年高二下学期期末考试数学试题
福建省南平市2022-2023学年高二下学期期末考试数学试题(已下线)模块二 专题3 概率与统计中决策问题(已下线)4.2.4 随机变量的数字特征(第2课时) 离散型随机变量的方差(分层练习)-2023-2024学年高二数学同步精品课堂(人教B版2019选择性必修第二册)(已下线)2023-2024学年高二下学期期中复习解答题压轴题十七大题型专练(2)(已下线)7.3.2 离散型随机变量的方差——课后作业(提升版)(已下线)专题04 随机变量的均值与方差综合--高二期末考点大串讲(人教B版2019选择性必修第二册)
名校
解题方法
3 . 某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:
(1)若将频率视为概率,从这100个水果中有放回地随机抽取5个,求恰好有2个水果是礼品果的概率(结果用分数表示);
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,
方案1:不分类卖出,单价为21元;
方案2:分类卖出,分类后的水果售价如下:
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取的是精品果的数量,求的分布列及方差.
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,
方案1:不分类卖出,单价为21元;
方案2:分类卖出,分类后的水果售价如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元 | 16 | 18 | 22 | 24 |
(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取的是精品果的数量,求的分布列及方差.
您最近一年使用:0次
4 . 在全球关注的抗击“新冠肺炎”中,某跨国科研中心的一个团队,研制了甲、乙两种治疗“新冠肺炎”新药,希望知道哪种新药更有效,为此进行动物试验,试验方案如下:
第一种:选取,,,,,,,,,共10只患病白鼠,服用甲药后某项指标分别为:84,87,89,91,92,92,86,89,90,90;
第二种:选取,,,,,,,,,共10只患病白鼠,服用乙药后某项指标分别为:81,87,83,82,80,90,86,89,84,79;
该团队判定患病白鼠服药后这项指标不低于85的确认为药物有效,否则确认为药物无效.
(1)已知第一种试验方案的10个数据的平均数为89,求这组数据的方差;
(2)现需要从已服用乙药的10只白鼠中随机抽取7只,求其中服药有效的只数不超过2只的概率;
(3)该团队的另一实验室有1000只白鼠,其中900只为正常白鼠,100只为患病白鼠,每用新研制的甲药给所有患病白鼠服用一次,患病白鼠中有90%变为正常白鼠,但正常白鼠仍有变为患病白鼠,假设实验室的所有白鼠都活着且数量不变,且记服用次甲药后此实验室正常白鼠的只数为.
(ⅰ)求并写出与的关系式;
(ⅱ)要使服用甲药两次后,该实验室正常白鼠至少有950只,求最大的正整数的值.
第一种:选取,,,,,,,,,共10只患病白鼠,服用甲药后某项指标分别为:84,87,89,91,92,92,86,89,90,90;
第二种:选取,,,,,,,,,共10只患病白鼠,服用乙药后某项指标分别为:81,87,83,82,80,90,86,89,84,79;
该团队判定患病白鼠服药后这项指标不低于85的确认为药物有效,否则确认为药物无效.
(1)已知第一种试验方案的10个数据的平均数为89,求这组数据的方差;
(2)现需要从已服用乙药的10只白鼠中随机抽取7只,求其中服药有效的只数不超过2只的概率;
(3)该团队的另一实验室有1000只白鼠,其中900只为正常白鼠,100只为患病白鼠,每用新研制的甲药给所有患病白鼠服用一次,患病白鼠中有90%变为正常白鼠,但正常白鼠仍有变为患病白鼠,假设实验室的所有白鼠都活着且数量不变,且记服用次甲药后此实验室正常白鼠的只数为.
(ⅰ)求并写出与的关系式;
(ⅱ)要使服用甲药两次后,该实验室正常白鼠至少有950只,求最大的正整数的值.
您最近一年使用:0次
名校
5 . 小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在时,日平均派送量为单.
若将频率视为概率,回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:,,,,,,,,)
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在时,日平均派送量为单.
若将频率视为概率,回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:,,,,,,,,)
您最近一年使用:0次
2018-04-10更新
|
1071次组卷
|
3卷引用:河北省石家庄市2018届高三下学期一模考试数学(理)(A卷)试题
名校
解题方法
6 . 某校设计了一个实验学科的实验考查方案;考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成两题便可通过,已知6道备选题中甲生有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,求:
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试用统计知识分析比较两考生的实验操作能力.
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试用统计知识分析比较两考生的实验操作能力.
您最近一年使用:0次
7 . 为推动党史学习教育工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委决定在教师党员中开展“学党史”知识竞赛.该校理综支部经过层层筛选,还有最后一个参赛名额要在甲,乙两名教师中间产生,支部书记设计了两种测试方案供两位教师选择.
方案一:从装有6个不同问题的纸盒中依次有放回抽取4个问题作答;
方案二:从装有6个不同问题的纸盒中依次不放回抽取4个问题作答.
已知这6个问题中,甲,乙两名教师都能正确回答其中的4个问题,且甲,乙两名教师对每个问题回答正确与否都是相互独立、互不影响的.假设甲教师选择了方案一,乙教师选择了方案二.
(1)求甲,乙两名教师都只答对2个问题的概率;
(2)若测试过程中每位教师答对1个问题得2分,答错得0分.你认为安排哪位教师参赛比较合适?请说明理由.
方案一:从装有6个不同问题的纸盒中依次有放回抽取4个问题作答;
方案二:从装有6个不同问题的纸盒中依次不放回抽取4个问题作答.
已知这6个问题中,甲,乙两名教师都能正确回答其中的4个问题,且甲,乙两名教师对每个问题回答正确与否都是相互独立、互不影响的.假设甲教师选择了方案一,乙教师选择了方案二.
(1)求甲,乙两名教师都只答对2个问题的概率;
(2)若测试过程中每位教师答对1个问题得2分,答错得0分.你认为安排哪位教师参赛比较合适?请说明理由.
您最近一年使用:0次
2024-03-29更新
|
1554次组卷
|
9卷引用:江苏省南通市2023-2024学年高二下学期3月质量监测数学试题
江苏省南通市2023-2024学年高二下学期3月质量监测数学试题(已下线)7.4.2超几何分布 第三练 能力提升拔高安徽省阜阳第一中学2023-2024学年高二下学期4月月考数学试题(已下线)专题3.3二项分布与超几何分布(六个重难点突破)-2023-2024学年高二数学下学期重难点突破及混淆易错规避(人教A版2019)(已下线)专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)(已下线)作业05 暑期培优必刷易错题-【暑假分层作业】(苏教版2019选择性必修第二册)(已下线)作业03 概率(2)-【暑假分层作业】(苏教版2019选择性必修第二册)河南省灵宝市第三高级中学2023-2024学年高二下学期精英对抗赛数学试题(已下线)第三章 随机变量及其分布列 专题三 重要的概率分布模型 微点1 重要的概率分布模型(一)【基础版】
名校
解题方法
8 . 为普及人工智能相关知识,发展青少年科技创新能力,并为中学生生涯规划提供方向,某知名高校联合当地十所中学举办了“科技改变生活”人工智能知识竞赛,并将最终从每所中学中各选拔一人进入高校进行为期一周的体验式活动.结合平时训练的成绩,红星中学的甲、乙两名学生进入校内最终选拔,组委会为此设计了如下选拔方案:设计6道题进行测试,若这6道题中,甲能正确解答其中4道,乙能正确解答每个题目的概率均为,假设甲、乙两人解答每道题目相互独立,现甲、乙从这6道题目中分别随机抽取3题进行解答:
(1)求甲、乙共答对2道题目的概率;
(2)设甲答对的题目个数为,求的分布列及数学期望;
(3)从期望和方差的角度进行分析,红星中学应选拔哪个学生代表学校参加体验活动?
(1)求甲、乙共答对2道题目的概率;
(2)设甲答对的题目个数为,求的分布列及数学期望;
(3)从期望和方差的角度进行分析,红星中学应选拔哪个学生代表学校参加体验活动?
您最近一年使用:0次
2024-07-15更新
|
334次组卷
|
2卷引用:山西省大同市2025届高三第一次学情调研监测数学试题
9 . 某商场举行有奖促销活动,凡5月1日当天消费不低于1000元,均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球,其中红球有4个,白球有2个,抽奖方案设置两种,顾客自行选择其中的一种方案.
方案一:从抽奖箱中,一次性摸出3个球,每有1个红球,可立减80元;
方案二:从抽奖箱中,有放回地每次摸出1个球,连摸3次,每摸到1次红球,立减80元.
(1)设方案一摸出的红球个数为随机变量X,求X的分布列、数学期望和方差;
(2)设方案二摸出的红球个数为随机变量Y,求Y的分布列、数学期望和方差;
(3)如果你是顾客,如何在上述两种抽奖方式中进行选择?请写出你的选择及简要理由.
方案一:从抽奖箱中,一次性摸出3个球,每有1个红球,可立减80元;
方案二:从抽奖箱中,有放回地每次摸出1个球,连摸3次,每摸到1次红球,立减80元.
(1)设方案一摸出的红球个数为随机变量X,求X的分布列、数学期望和方差;
(2)设方案二摸出的红球个数为随机变量Y,求Y的分布列、数学期望和方差;
(3)如果你是顾客,如何在上述两种抽奖方式中进行选择?请写出你的选择及简要理由.
您最近一年使用:0次
2024-07-16更新
|
149次组卷
|
3卷引用:甘肃省酒泉市2023-2024学年高二下学期7月期末数学试题
名校
解题方法
10 . 某校为了庆祝建校100周年,举行校园文化知识竞赛.某班经过层层选拔,还有最后一个参赛名额要在甲、乙两名学生中产生,该班设计了一个选拔方案:甲,乙两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为.甲、乙两名学生对每个问题回答正确与否都是相互独立的.
(1)分别求甲、乙两名学生恰好答对2个问题的概率;
(2)设甲答对的题数为,乙答对的题数为,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.
(1)分别求甲、乙两名学生恰好答对2个问题的概率;
(2)设甲答对的题数为,乙答对的题数为,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.
您最近一年使用:0次
2023-11-25更新
|
1105次组卷
|
5卷引用:贵州省贵阳市五校2023届高三联合考试(四)数学(理)试题
贵州省贵阳市五校2023届高三联合考试(四)数学(理)试题辽宁省沈阳市第一二〇中学2023-2024学年高二上学期第四次质量监测数学试题(已下线)考点13 二项分布与超级几何分布 2024届高考数学考点总动员(已下线)专题21 概率与统计的综合运用(13大题型)(练习)(已下线)第五章 概率统计创新问题 专题一 概率统计决策问题 微点1 概率统计决策问题(一)【培优版】