组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 4 道试题
1 . 由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果椭圆的“特征三角形”为,椭圆的“特征三角形”为,若,则称椭圆“相似”,并将的相似比称为椭圆的相似比.已知椭圆与椭圆相似.
(1)求椭圆的离心率;
(2)若椭圆与椭圆的相似比为,设上异于其左、右顶点的一点.
①当时,过分别作椭圆的两条切线,切点分别为,设直线的斜率为,证明:为定值;
②当时,若直线交于两点,直线交于两点,求的值.
2 . 已知,且,函数.
(1)记为数列的前项和.证明:当时,
(2)若,证明:
(3)若有3个零点,求实数的取值范围.
2024-03-21更新 | 721次组卷 | 1卷引用:2024届山西省高考一模数学试题
3 . 群的概念由法国天才数学家伽罗瓦(1811-1832)在19世纪30年代开创,群论虽起源于对代数多项式方程的研究,但在量子力学晶体结构学等其他学科中也有十分广泛的应用.设是一个非空集合,“”是一个适用于中元素的运算,若同时满足以下四个条件,则称对“”构成一个群:(1)封闭性,即若,则存在唯一确定的,使得;(2)结合律成立,即对中任意元素都有;(3)单位元存在,即存在,对任意,满足,则称为单位元;(4)逆元存在,即任意,存在,使得,则称互为逆元,记作.一般地,可简记作可简记作可简记作,以此类推.正八边形的中心为.以表示恒等变换,即不对正八边形作任何变换;以表示以点为中心,将正八边形逆时针旋转的旋转变换;以表示以所在直线为轴,将正八边形进行轴对称变换.定义运算“”表示复合变换,即表示将正八边形先进行变换再进行变换的变换.以形如,并规定的变换为元素,可组成集合,则对运算“”可构成群,称之为“正八边形的对称变换群”,记作.则以下关于及其元素的说法中,正确的有(       
A.,且
B.互为逆元
C.中有无穷多个元素
D.中至少存在三个不同的元素,它们的逆元都是其本身
2024-03-21更新 | 602次组卷 | 1卷引用:2024届山西省高考一模数学试题
4 . 悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.通过适当建立坐标系,悬链线可为双曲余弦函数的图象,类比三角函数的三种性质:①平方关系:①,②和角公式:,③导数:定义双曲正弦函数
(1)直接写出具有的类似①、②、③的三种性质(不需要证明);
(2)若当时,恒成立,求实数a的取值范围;
(3)求的最小值.
共计 平均难度:一般