组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 218 道试题
1 . 约数,又称因数.它的定义如下:若整数除以整数除得的商正好是整数而没有余数,我们就称的倍数,称的约数.设正整数共有个正约数,即为.
(1)当时,若正整数个正约数构成等比数列,请写出一个的值;
(2)当时,若构成等比数列,求正整数
(3)记,求证:.
2024-08-30更新 | 407次组卷 | 17卷引用:专题06 数列
2 . 如图,在平行六面体中,,点中点.

   

(1)证明:平面
(2)求二面角的正弦值.
2024-03-12更新 | 3521次组卷 | 11卷引用:专题04 立体几何
4 . 在某数字通信中,信号的传输包含发送与接收两个环节.每次信号只发送0和1中的某个数字,由于随机因素干扰,接收到的信号数字有可能出现错误,已知发送信号0时,接收为0和1的概率分别为;发送信号1时,接收为1和0的概率分别为.假设每次信号的传输相互独立.
(1)当连续三次发送信号均为0时,设其相应三次接收到的信号数字均相同的概率为,求的最小值;
(2)当连续四次发送信号均为1时,设其相应四次接收到的信号数字依次为,记其中连续出现相同数字的次数的最大值为随机变量中任意相邻的数字均不相同时,令),若,求的分布列和数学期望.
5 . 记的内角的对边分别为,已知
(1)求角的大小;
(2)若,求周长的最大值.
6 . 已知曲线
(1)若点上的任意一点,直线,判断直线的位置关系并证明.
(2)若是直线上的动点,直线相切于点,直线相切于点
①试问是否为定值?若是,求出该定值;若不是,请说明理由.
②若直线轴分别交于点,证明:
2024-02-24更新 | 1670次组卷 | 3卷引用:专题07 直线与圆、圆锥曲线
7 . 在如图所示的五面体中,共面,是正三角形,四边形为菱形,平面,点中点.

   

(1)证明:平面
(2)已知,求平面与平面所成二面角的正弦值.
8 . 某校为了丰富学生课余生活,体育节组织定点投篮比赛.为了解学生喜欢篮球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:

喜欢篮球

不喜欢篮球

合计

男生

40

女生

30

合计

(1)根据所给数据完成上表,依据小概率值独立性检验,能否据此推断该校学生喜欢篮球与性别有关?
(2)篮球指导老师从喜欢篮球的学生中抽取了2名男生和1名女生进行投篮示范.已知这两名男生投进的概率均为,这名女生投进的概率为,每人投篮一次,假设各人投篮相互独立,求3人投进总次数的分布列和数学期望.
附:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2024-02-24更新 | 2109次组卷 | 6卷引用:专题08 平面向量、概率、统计、计数原理
9 . 在平面直角坐标系中,点为动点,以为直径的圆与轴相切,记的轨迹为.
(1)求的方程;
(2)设为直线上的动点,过的直线与相切于点,过作直线的垂线交于点,求面积的最小值.
2024-02-24更新 | 2413次组卷 | 7卷引用:专题07 直线与圆、圆锥曲线
10 . 已知函数.
(1)设函数,讨论的单调性;
(2)设分别为的极大值点和极小值点,证明:.
共计 平均难度:一般