组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 18 道试题
1 . 已知是边长为4的等边三角形,将它沿中线折起得四面体,使得此时,则四面体的外接球表面积为_______
2 . 已知的面积为9,,过D分别作EF,且,则______.
3 . 著名的费马问题是法国数学家皮埃尔·德·费马(1601-1665)于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当△ABC的三个内角均小于120°时,则使得的点P即为费马点.在△ABC中,角ABC的对边分别为,且.若的“费马点”,
(1)求角
(2)若,求的周长;
(3)在(2)的条件下,设,若当时,不等式恒成立,求实数的取值范围.
4 . 已知的内角ABC对的边分别为abcD为边AC上一点,满足,则的最小值为_________
2024-04-08更新 | 369次组卷 | 1卷引用:宁夏银川市第二中学2023-2024学年高一下学期月考一数学试卷
智能选题,一键自动生成优质试卷~
5 . 已知向量满足,则的最大值等于(     
A.B.C.2D.
6 . 在中,角ABC的对边分别为abc,且,若点M的中点,且,则______
7 . 如图,在正三棱柱中,的中点,点上,,点在直线上,对于线段上异于两端点的任一点,恒有平面

      

(1)求证:平面平面
(2)当的面积取得最大值时,求二面角的余弦值.
2023-08-01更新 | 1542次组卷 | 7卷引用:宁夏吴忠市2022-2023学年高一下学期期末联合调研考试数学试题
8 . 某数学建模活动小组在开展主题为“空中不可到达两点的测距问题的探究活动中,抽象并构建了如图所示的几何模型,该模型中MANB均与水平面ABC垂直.在已测得可直接到达的两点间距离ACBC的情况下,四名同学用测角仪各自测得下列四组角中的一组角的度数,其中一定能唯一确定MN之间的距离的有(       

   

A.∠MCA,∠NCB,∠ABCB.∠ACB,∠NCB,∠MCN
C.∠MCA,∠NCB,∠MCND.∠MCA,∠NCB,∠ACB
9 . 请从①;②;③这三个条件中任选一个,补充在下列问题中,并加以解答.(如未作出选择,则按照选择①评分)
中,abc分别是角ABC的对边,若__________.
(1)求角B的大小;
(2)若为锐角三角形,,求的取值范围.
10 . 如图,在菱形ABCD中,MBC的中点,将沿直线AM翻折成,连接N的中点,则(       
   
A.平面平面AMCD
B.线段CN的长为定值
C.当三棱锥的体积最大时,三棱锥的外接球表面积为
D.直线AMCN所成的角始终为
共计 平均难度:一般