组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 42 道试题
1 . 素描几何体是素描初学者学习绘画的必学课程,是复杂形体最基本的组成和表现方式,因此几何体是美术入门最重要的一步.素描几何体包括:柱体、锥体、球体以及它们的组合体和穿插体.如图2所示的几何体可以看作是一个正四棱柱和一个正四棱锥组成的几何体,已知正四棱柱和正四棱锥的高之比为,且底面边长均为,若该几何体的所有顶点都在某个球的表面上,则(       
   
A.正四棱柱和正四棱锥组成的几何体的体积为160
B.该几何体外接球的体积为
C.正四棱锥的侧棱与其底面所成角的正弦值为
D.正四棱锥的侧面与其底面的夹角的正弦值为
2023-11-09更新 | 434次组卷 | 3卷引用:辽宁省县级重点高中协作体2023-2024学年高三上学期11月期中考试数学试题
2 . 已知三棱锥的棱两两垂直,的中点,在棱上,且平面,则下列说法错误的是(   ).
A.
B.与平面所成的角为
C.三棱锥外接球的表面积为
D.点到平面的距离为
2023-11-09更新 | 635次组卷 | 2卷引用:辽宁省大连市滨城高中联盟2023-2024学年高二上学期期中考试数学试题
3 . 如图①,在平面四边形ABDC中,将△BCD沿BC折起,形成如图②所示的三棱锥,且.

(1)证明:平面ABC
(2)在三棱锥中,EFG分别为线段ABBCAC的中点,设平面DEF与平面DAC的交线为lQl上的点,求直线DE与平面QFG所成角的正弦值的取值范围.
2023-10-14更新 | 604次组卷 | 4卷引用:辽宁省名校联盟2023-2024学年高二上学期10月联合考试数学试题
4 . 已知是圆锥的底面圆的直径,分别是底面圆的圆周上的点,且的中点,则(       
A.平面平面B.三棱锥的体积为
C.异面直线所成角为D.直线与平面所成角为
2023-09-12更新 | 396次组卷 | 2卷引用:辽宁省名校联盟2023-2024学年高二上学期9月联合考试数学试题
智能选题,一键自动生成优质试卷~
5 . 在正方体中,点为棱上的动点,则与平面所成角的取值范围为(       
A.B.C.D.
2023-09-05更新 | 652次组卷 | 7卷引用:辽宁省沈阳市五校协作体2024届高三上学期期中数学试题
6 . 在棱长为1的正方体中,为侧面内的一个动点(含边界),则下列说法正确的是(       
A.随着点移动,三棱锥的体积有最小值为
B.三棱锥体积的最大值为
C.直线与平面所成角的余弦值为
D.作体对角线的垂面,则平面截此正方体所得截面图形的面积越大,其周长越大
2023-08-12更新 | 912次组卷 | 7卷引用:辽宁省鞍山市台安县高级中学2022-2023学年高一下学期期末数学试题
7 . 如图,在堑堵中(注:堑堵是一长方体沿不在同一面上的相对两棱斜解所得的几何体,即两底面为直角三角形的直三棱柱,最早的文字记载见于《九章算术》商功章),已知平面,点分别是线段的中点.

   

(1)证明:平面
(2)求直线与平面所成角的余弦值.
2023-08-02更新 | 1132次组卷 | 8卷引用:辽宁省朝阳市建平县实验中学2023-2024学年高二上学期期中数学试题
8 . 在正三棱台中,中点,上,.

   

(1)请作出与平面的交点,并写出的比值(在图中保留作图痕迹,不必写出画法和理由);
(2)求直线与平面所成角的正弦值.
2023-08-02更新 | 1724次组卷 | 6卷引用:辽宁省大连市2022-2023学年高一下学期期末数学试题
9 . 如图,在直三棱柱中,的中点,上的动点,上,且满足.现延长点,使得.
   
(1)若二面角的平面角为,求的长;
(2)若三棱锥的体积为,求与平面所成角的正弦值.
2023-07-27更新 | 1293次组卷 | 6卷引用:辽宁省鞍山市台安县高级中学2022-2023学年高一下学期期末数学试题
10 . 如图,已知正方形的边长为2,分别是的中点,平面,且,则与平面所成角的正弦值为(       

      

A.B.C.D.
2023-07-26更新 | 1526次组卷 | 11卷引用:辽宁省沈阳市浑南区东北育才学校2023-2024学年高二上学期10月月考数学试题
共计 平均难度:一般