组卷网 > 章节选题 > 必修2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 15 道试题
1 . 我国南北朝的伟大科学教祖暅于5世纪提出了著名的祖暅原理,意思就是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个几截面的面积总相等,那么这两个几何体的体积相等.如图1,为了求半球的体积,可以构造一个底面半径和高都与半球的半径相等的圆柱,与半球放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一个新几何体,用任何一个平行底面的平面去截它们时,两个截面面积总相等.如图2,某个清代陶瓷容器的上、下底面为互相平行的圆面(上底面开口,下底面封闭),侧面为球面的一部分,上、下底面圆半径都为6cm,且它们的距离为24cm,则该容器的容积为______(容器的厚度忽略不计).

7日内更新 | 387次组卷 | 3卷引用:2024年北京高考数学真题平行卷(提升)
2 . 风筝又称为“纸鸢”,由中国古代劳动人民发明于距今2000多年的东周春秋时期,相传墨翟以木头制成木鸟,研制三年而成,是人类最早的风筝起源.如图,是某高一年级学生制作的一个风筝模型的多面体ABCEFDAB的中点,四边形EFDC为矩形,且,当时,多面体ABCEF的体积为(       

   

A.B.C.D.
7日内更新 | 70次组卷 | 1卷引用:北京市顺义区第一中学2024届高三下学期高考考前适应性检测数学试卷
3 . 木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形是边长为2的正方形,且均为等边三角形,,则该木楔的体积为(       
A.B.C.D.
2024-01-09更新 | 581次组卷 | 1卷引用:北京市大兴区2024届高三上学期期末数学试题
4 . 刍甍(chú méng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广.”可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”如图,在刍甍中,四边形是边长为2的正方形,到平面的距离为3,则该刍甍的体积可能是(       

   

A.B.4C.D.3
5 . 坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为(       

   

A.B.
C.D.
2023-06-19更新 | 11473次组卷 | 26卷引用:2023年北京高考数学真题
6 . “牟合方盖”是我国古代数学家刘徽在研究球的体积过程中构造的一个和谐优美的几何模型.如图1,正方体的棱长为2,用一个底面直径为2的圆柱面去截该正方体,沿着正方体的前后方向和左右方向各截一次,截得的公共部分即是一个牟合方盖(如图2).已知这个牟合方盖与正方体外接球的体积之比为,则正方体除去牟合方盖后剩余部分的体积为(       

A.B.
C.D.
2023-05-25更新 | 689次组卷 | 3卷引用:北京市2023届高三高考模拟预测考试数学试题
7 . 数学中有许多形状优美,寓意独特的几何体,“勒洛四面体”就是其中之一.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分.如图,在勒洛四面体中,正四面体的棱长为,则下列结论正确的是(       

A.勒洛四面体最大的截面是正三角形
B.若是勒洛四面体表面上的任意两点,则的最大值为
C.勒洛四面体的体积是
D.勒洛四面体内切球的半径是
2023-04-10更新 | 1748次组卷 | 6卷引用:数学(北京卷)
8 . 如图是一个底面半径和高都是1的装满沙子的圆锥形沙漏,从计时开始,流出沙子的体积是沙面下降高度的函数,若正数满足,则的最大值为(       
A.B.C.D.
2021-05-05更新 | 574次组卷 | 5卷引用:北京市十一学校2022届高三4月月考数学试题
9 . 《九章算术》中,称四个面均为直角三角形的四面体为“鳖臑”.已知某“鳖臑”的三视图如图所示,则该“鳖臑”的体积_____________

2021-05-05更新 | 534次组卷 | 4卷引用:北京市中央民族大学附属中学2021届高三三模数学试题
10 . 瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作,点,点,且其“欧拉线”与圆相切.则圆上的点到直线的距离的最小值为(       
A.B.C.D.6
2021-04-02更新 | 790次组卷 | 5卷引用:北京市石景山区2021届高三一模数学试题
共计 平均难度:一般