组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 77 道试题
1 . 2023年12月28日工业和信息化部等八部门发布了关于加快传统制造业转型升级的指导意见,红星机械厂积极响应决定投资生产产品.经过市场调研,生产产品的固定成本为300万元,每生产万件,需可变成本万元,当产量不足50万件时,;当产量不小于50万件时,.每件产品的售价为200元,通过市场分析,生产的产品可以全部销售完.
(1)求利润函数的解析式;
(2)求利润函数的最大值.
2024-03-29更新 | 463次组卷 | 5卷引用: 广西桂林市田家炳中学2023-2024学年高二下学期期中测试数学试题
2 . 2014年,几个生产袋装螺蛳粉的小作坊在柳州悄然出现,打破了长期以来螺蛳粉只能“现煮堂食”的局面,政府通过引导,让相关产业逐步走向标准化,2018年8月20日,“柳州螺蛳粉”获得国家地理标志商标,2020年新冠肺炎疫情期间,柳州螺蛳粉逆势而上,成为全国热销产品,迅速走红.2022年,柳州螺蛳粉全产业链销售收入600.7亿元、增长19.8%,其中预包装柳州螺蛳粉销售收入182亿元、增长19.6%,年寄递量达到1.1亿件,今年某平台网红委托某工厂代加工袋装螺蛳粉,生产该款产品每月固定成本为4万元,每生产万袋,需另投入成本万元.当产量不足6万袋时,;当产量不小于6万袋时,.若该产品工厂的供货价为6元/袋,根据平台网流量,该款产品可以全部销售完.
(1)求工厂生产该款产品每月所获利润(万元)关于产量(万袋)的函数关系式;
(2)当月产量为多少万袋时,工厂生产该款产品每月所获利润最大,为多少万元?
2024-02-17更新 | 94次组卷 | 1卷引用:广西柳州市2023-2024学年高一上学期期末联考数学试卷
12-13高二下·江苏宿迁·期中
3 . 小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元),每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
2023-02-01更新 | 360次组卷 | 28卷引用:广西桂林市中山中学2021-2022学年高二上学期期中质量检测数学(理)试题
4 . 2022年某企业整合资金投入研发高科技产品,并面向全球发布了首批17项科技创新重大技术需求榜单,吸引清华大学、北京大学等60余家高校院所参与,实现企业创新需求与国内知名科技创新团队的精准对接,最终该公司产品研发部决定将某项高新技术应用到某高科技产品的生产中,计划该技术全年需投入固定成本6200万元,每生产千件该产品,需另投入成本万元,且,假设该产品对外销售单价定为每件0.9万元,且全年内生产的该产品当年能全部售完.
(1)求出全年的利润万元关于年产量千件的函数关系式;
(2)试求该企业全年产量为多少千件时,所获利润最大,并求出最大利润.
5 . 某厂家生产医用防护用品需投入年固定成本100万元,另生产万件时,还需要投入流动成本万元,在年产量不足万件时,(万元),在年产量大于或等于19万件时,(万元),每万件产品售价为25(万元),通过市场分析,该厂家生产的医用防护用品当年能全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,该生产厂家在这一商品的生产中获得利润最大?最大利润是多少?
6 . 新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病,2020上半年我国疫情严重,在党的正确领导下,疫情得到有效控制,为了发展经济,国家鼓励复工复产,某手机品牌公司响应国家号召投入生产某款手机,前期投入成本40万元,每生产1万部还需另投入16万元.设该公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为万元,且满足关系式,已知该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万元.
(1)写出年利润(万元)关于年产量x(万部)的函数解析式;
(2)当年产量为多少时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.
7 . 新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业公司扩大生产提供)(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服,公司在收到政府(万元)补贴后,防护服产量将增加到(万件),其中为工厂工人的复工率(),公司生产万件防护服还需投入成本(万元).
(1)将公司生产防护服的利润(万元)表示为补贴(万元)的函数(政府补贴万元计入公司收入);
(2)当复工率时,政府补贴多少万元才能使公司的防护服利润达到最大?并求出最大值.
8 . 2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为万元,每生产万件,需另投入成本为.当年产量不足万件时,(万元);当年产量不小于万件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值.
9 . 为了振兴乡村,打好扶贫攻坚战,某企业应当地政府号召,在其扶贫基地建厂,利用当地原材料优势生产某种产品,已知年固定成本为50万元,年变动成本(万元)与产品产量(万件)的关系为,产品售价为10.5万元/万件,该企业利用其产业链优势,可将该厂产品全部收购
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(2)当年产量为多少时,该厂年利润最大?最大利润为多少?
10 . 佩戴口罩能起到一定预防新冠肺炎的作用,某科技企业为了满足口罩的需求,决定开发生产口罩的新机器.生产这种机器的月固定成本为万元,每生产台,另需投入成本(万元),当月产量不足70台时,(万元);当月产量不小于70台时,(万元).若每台机器售价万元,且该机器能全部卖完.
(1)求月利润(万元)关于月产量(台)的函数关系式;
(2)月产量为多少台时,该企业能获得最大月利润?并求出其利润.
2020-10-18更新 | 3323次组卷 | 38卷引用:广西南宁市2022-2023学年高一下学期教学质量调研数学试题
共计 平均难度:一般