组卷网 > 知识点选题 > 双曲线中的定点、定值
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 7 道试题
1 . 已知双曲线过点和点
(1)求双曲线的方程.
(2)过的直线与双曲线交于两点,过双曲线的右焦点且与平行的直线交双曲线于两点,试问是否为定值?若是定值,求该定值;若不是定值,请说明理由.
2023-10-24更新 | 449次组卷 | 1卷引用:甘肃省白银市部分高中2024届高三上学期阶段检测数学试题
2 . 已知等轴双曲线C的左,右顶点分别为AB,且.
(1)求双曲线C的方程;
(2)过点的直线l交双曲线CDE两点(不与AB重合),直线AD与直线BE的交点为P,证明:点P在定直线上,并求出该定直线的方程.
3 . 已知双曲线的右焦点为,且点在双曲线C上.
(1)求双曲线C的方程;
(2)过点F的直线与双曲线C的右支交于AB两点,在x轴上是否存在不与F重合的点P,使得点F到直线PAPB的距离始终相等?若存在,求出点P的坐标;若不存在,请说明理由.
2022-12-29更新 | 1349次组卷 | 9卷引用:甘肃省张掖市某重点校2022-2023学年高二下学期5月月考数学试题
4 . 已知双曲线的右焦点到渐近线的距离为
(1)求双曲线的方程.
(2)过点的直线与双曲线的右支交于两点,在轴上是否存在点,使得点到直线的距离相等? 若存在,求出点的坐标; 若不存在,请说明理由.
智能选题,一键自动生成优质试卷~
5 . 已知F1,0),F2,0)为双曲线C的两个焦点,点在双曲线C上.
(1)求双曲线C的方程;
(2)已知点AB是双曲线C上异于P的两点,直线PAPBy轴分别相交于MN两点,若,证明:直线AB过定点.
2022-07-10更新 | 1709次组卷 | 10卷引用:甘肃省白银市靖远县第四中学2022-2023学年高二下学期6月月考数学试题
6 . 已知双曲线的左顶点为,右焦点为F,点BC上.当.不垂直于x轴的直线与双曲线同一支交于PQ两点.
(1)求双曲线C的标准方程;
(2)直线PQ过点F,在x轴上是否存在点N,使得x轴平分?若存在,求出点的N的坐标;若不存在,说明理由.
7 . 已知双曲线,离心率为为其左右焦点,为其上任一点,且满足

(1)求双曲线的方程;
(2)已知是双曲线上关于轴对称的两点,点上异于的任意一点,直线分别交轴于点,试问:是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中是坐标原点).
共计 平均难度:一般